scholarly journals Contact Stress Analysis , Optimization of Spur Gear by Finite Element Analysis

Author(s):  
Suhas Borate , Prasad P. Kulkarni Suhas Borate , Prasad P. Kulkarni ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 13
Author(s):  
Anand Mohan Singh ◽  
Megha Bhawsar ◽  
Neeraj Kumar Nagayach

In this present work a virtual environment has been created to investigate the failure analysis on spur gear assembly in which structural analysis, fatigue failure analysis and contact stress analysis have been performed using finite element method. For this work, a three dimensional cad model has been created and imported to ANSYS workbench for further finite element analysis. Various boundary conditions have been used to perform structural, fatigue failure assessment and contact analysis such as revolute joints is provided with Body Ground connection for 60 rpm for structure analysis, Augmented Lagrange method is set for contact analysis, for fatigue life analysis the fatigue strength factor is used as 0.85 for fully reverse loading and the life of shear stress in cycles and for the contact analysis linear and nonlinear contact are used for both source and target body. It has been observe that contact stress and bending stress not attain their maximum values at the same points, if the contact stress minimize in primary design stage then the failure of gear can minimized by analysis of the problem during the earlier stage of design. It can also be state that by using finite element analysis complex analysis like fatigue and contact analysis can be performed very accurately within a very short time and cost effectively rather than experimental analysis.


Author(s):  
Timothy J Lisle ◽  
Brian A Shaw ◽  
Robert C Frazer

The Association of German Engineers VDI 2737:2005 and the International Organisation for Standardisation ISO 6336:2006 are universally accepted analytical procedures for the analysis of internal gears. There is no official American Gear Manufacturers Association standard for internal gear stress analysis due to the validity of inscribing the Lewis parabola within internal concave profiles and the resulting errors associated with the location of maximum root bending stress. This research investigates the differences associated with using ISO 6336, VDI 2737 and an unofficial American Gear Manufacturers Association method, all of which are compared against a potentially more accurate numerical (ANSYS) method and strain gauge techniques.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


2014 ◽  
Vol 496-500 ◽  
pp. 1007-1011
Author(s):  
Jian Hua Fang ◽  
Wei Yan

The design of seal device that can be used in carbide actor is a real problems.This paper presents a kind of oblique-cone-slid-ring (OCSR) assembly seal device that can self-compensate the seal wear in application. The max contact stress on the seal surface and other contact face is far bigger than the work stress of sealed medium in carbide actor. That means the design satisfies the user demand . Keywords: oblique-cone-sliding-ring (OCSR) assembly seal; self-compensation to seal wear; finite element analysis; contact stress;


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


Sign in / Sign up

Export Citation Format

Share Document