scholarly journals Life cycle assessment of processing for chrome tanned cowhide upper leather

2021 ◽  
Vol 21 (2) ◽  
pp. 75-86
Author(s):  
Heng YANG ◽  
Dexin AN ◽  
Carmen GAIDAU ◽  
Jinwei ZHANG ◽  
Jin ZHOU

Pollution has become a serious problem in leather industry, however, current method to evaluate its environmental effect usually used data from literature review, those data generated while leather manufacturing were rarely collected and analyzed. Thereby, the aim of this study was to evaluate the environmental effect of manufacturing process of chrome tanned cowhide upper leather by applying the Life Cycle Assessment protocols. Following the guidance of ISO 14010, we first combined data obtained from field study and empirical review; and then these data were input into eFootprint for calculation. Results, including four environmental indicators (global warming potential [GWP], primary energy demand [PED], water utility [WU] and acidification [AP]), show that producing 1 kg of cowhide upper leather releases 7.040 kg of CO2 eq, consumes 106.793 MJ of energy and 89.144 kg of water and emits 0.058 kg of SO2 eq. Sensitivity analysis of inventory data demonstrated that chrome tanning and retanning processes accounted for more than 40% of PED, AP and GWP, whereas the beamhouse was more than 78% of WU. Therefore, we could optimise the tanning process by using alternative materials or technologies in the critical sections to achieve cleaner production and sustainable leather manufacturing.

2021 ◽  
Author(s):  
Shiqi Liu ◽  
Jiming Liu ◽  
Yuan Gao ◽  
Benye Xi ◽  
Zhong Chen ◽  
...  

Abstract Sapindus mukorossi G. has been considered as a potential feedstock for forest-based biodiesel in China. To optimize the cultivation of soapberry and ensure its sustainable supply, an environmental life cycle assessment (LCA) was conducted using a chronological approach combined with extrapolation. Soapberry plantations with two degrees of cultivation intensities were comparatively analyzed. For the studied environmental categories, nitrogen fertilization accounted for half or more of the global warming potential, primary energy demand, acidification and eutrophication potential. The main contributors to ozone depletion were pesticides and potassium fertilizer. The plantations with a relatively low cultivation intensity presented better environmental performance, mainly due to the lower input of fertilizers, but they are not a priority choice for soapberry cultivation because of low yield. Stakeholders should focus on how to reduce the environmental impacts of the plantations with a relatively high cultivation intensity in this area. Overall, classified management, increasing the yield, reducing the inputs of chemicals and decreasing the unproductive years are the key ways to improve the environmental performance of soapberry cultivation in Southeast China. Woody biomass carbon should be included in LCAs, and 3.71-5.11 t CO2 can be fixed by soapberry plantations per ha year, indicating that soapberry cultivation provides a net carbon sink.


2018 ◽  
Vol 913 ◽  
pp. 991-997
Author(s):  
Chun Zhi Zhao ◽  
Yi Liu ◽  
Shi Wei Ren ◽  
Yan Jiao Zhang

As a kind of high-grade flexible insulation and energy-saving material, rubber-plastic sponge insulation material is produced by taking butadiene-acrylonitrile rubber and polyvinyl chloride as main materials, together with auxiliary materials such as fire retardant, plasticizer, foaming agent and filler, through production processes as weighing stock, pre-smelting, mixing, extrusion, foaming and cutting and packaging. By taking 1m3 rubber-plastic sponge as the functional unit, this paper quantitatively obtains that the impact of the product on primary energy demand, greenhouse effect, acidification potential, photochemical ozone formation potential and respirable inorganics is 2,100MJ/m3, 74.9kg CO2 equivalent/m3, 0.356kg SO2 equivalent/m3, 0.244kg NMVOC/m3 and 0.0642kg PM2.5 equivalent/m3 respectively. This paper provides reference for enterprise's cleaner production and consumer's green material selection by making life cycle assessment for rubber-plastic insulation material, quantifying the environmental load of the product, identifying the environment hot spots in product life cycle and illustrating the environment compatibility of product.


2019 ◽  
Vol 233 ◽  
pp. 782-792 ◽  
Author(s):  
Qiang Xu ◽  
Kelin Hu ◽  
Xiaolong Wang ◽  
Donghui Wang ◽  
Marie Trydeman Knudsen

2021 ◽  
Vol 2069 (1) ◽  
pp. 012032
Author(s):  
A J Mayer ◽  
T Jürgens

Abstract The aim of passive design is to respond to the external climate using primarily structural means to achieve a comfortable indoor climate. The use of building technology is an additional measure. This paper compares the demand for resources, primary energy, and thermal and air-hygienic comfort of passive and climate-unadapted designs to determine the most energy-efficient and sustainable design. It also analyses whether user comfort suffers from reduced use of technical building equipment. For this purpose, a representative passive building model is compared with a climate-unadapted one. Comfort, primary and embodied energy are determined and compared by way of a simulation and life cycle assessment. The passive design presents a lower primary energy demand than the climate-unadapted one, even when embodied energy is taken into account. While the requirements of air-hygienic comfort are fulfilled equally in both types of buildings, the passive design displays better thermal comfort. This indicates that energy can be saved by employing a passive design.


Author(s):  
Rebekah Yang ◽  
Imad L. Al-Qadi ◽  
Hasan Ozer

The use of life-cycle assessment (LCA) to assess the environmental impacts of pavement systems has become more prevalent in recent years. When performing an LCA study, a series of methodological choices must be defined. As these decisions can change from study to study, it is important to understand the significance or insignificance of the methodological choices relevant to pavement LCA. This paper evaluated the sensitivity of five choices commonly made in pavement LCA; cut-off criteria, end-of-life (EOL) allocation, asphalt binder allocation, traffic growth, and type of energy reported. Eight case studies and four environmental indicators, that is, global warming potential, primary energy as fuel, total primary energy, and a unitless single score, were considered in the sensitivity analyses. Varying the cut-off criteria and asphalt binder allocation only had a significant impact on the environmental indicators when the use stage of the life-cycle is excluded and only the materials and construction, maintenance and rehabilitation, and EOL stages are considered. Using different EOL allocations, traffic growths, and types of energy reported had significant effects on the overall life-cycle results. Common methodological choices made in a pavement LCA are expected to have an impact on LCA results and subsequent interpretation, with the magnitude of the impact dependent on the scope of the analysis.


2020 ◽  
Vol 12 (13) ◽  
pp. 5396
Author(s):  
Sebastian Wolff ◽  
Moritz Seidenfus ◽  
Karim Gordon ◽  
Sergio Álvarez ◽  
Svenja Kalt ◽  
...  

The transportation sector needs to significantly lower greenhouse gas emissions. European manufacturers in particular must develop new vehicles and powertrains to comply with recent regulations and avoid fines for exceeding C O 2 emissions. To answer the question regarding which powertrain concept provides the best option to lower the environmental impacts, it is necessary to evaluate all vehicle life-cycle phases. Different system boundaries and scopes of the current state of science complicate a holistic impact assessment. This paper presents a scaleable life-cycle inventory (LCI) for heavy-duty trucks and powertrains components. We combine primary and secondary data to compile a component-based inventory and apply it to internal combustion engine (ICE), hybrid and battery electric vehicles (BEV). The vehicles are configured with regard to their powertrain topology and the components are scaled according to weight models. The resulting material compositions are modeled with LCA software to obtain global warming potential and primary energy demand. Especially for BEV, decisions in product development strongly influence the vehicle’s environmental impact. Our results show that the lithium-ion battery must be considered the most critical component for electrified powertrain concepts. Furthermore, the results highlight the importance of considering the vehicle production phase.


2019 ◽  
Vol 25 (3) ◽  
pp. 577-587 ◽  
Author(s):  
Kiara S. Winans ◽  
Ilan Macadam-Somer ◽  
Alissa Kendall ◽  
Roland Geyer ◽  
Elias Marvinney

Abstract Purpose Plant-based alternatives to dairy milk have grown in popularity over the last decade. Almond milk comprises the largest share of plant-based milk in the US market and, as with so many food products, stakeholders in the supply chain are increasingly interested in understanding the environmental impacts of its production, particularly its carbon footprint and water consumption. This study undertakes a life cycle assessment (LCA) of a California unsweetened almond milk. Methods The scope of this LCA includes the production of almond milk in primary packaging at the factory gate. California produces all US almonds, which are grown under irrigated conditions. Spatially resolved modeling of almond cultivation and primary data collection from one almond milk supply chain were used to develop the LCA model. While the environmental indicators of greatest interest are global warming potential (GWP) and freshwater consumption (FWC), additional impact categories from US EPA’s TRACI assessment method are also calculated. Co-products are accounted for using economic allocation, but mass-based allocation and displacement are also tested to understand the effect of co-product allocation choices on results. Results and discussion The GWP and FWC of one 48 oz. (1.42 L) bottle of unsweetened almond milk are 0.71 kg CO2e and 175 kg of water. A total of 0.39 kg CO2e (or 55%) of the GWP is attributable to the almond milk, with the remainder attributable to packaging. Almond cultivation alone is responsible for 95% of the FWC (167 kg H2O), because of irrigation water demand. Total primary energy consumption (TPE) is estimated at 14.8 MJ. The 48 oz. (1.42 L) PET bottle containing the almond milk is the single largest contributor to TPE (42%) and GWP (35%). Using recycled PET instead of virgin PET for the bottle considerably reduces all impact indicators except for eutrophication potential. Conclusions For the supply chain studied here, packaging choices provide the most immediate opportunities for reducing impacts related to GWP and TPE, but would not result in a significant reduction in FWC because irrigation water for almond cultivation is the dominant consumer. To provide context for interpretation, average US dairy milk appears to have about 4.5 times the GWP and 1.8 times the FWC of the studied almond milk on a volumetric basis.


2021 ◽  
Vol 3 (4) ◽  
pp. 699-710
Author(s):  
Sarat Chandra Togarcheti ◽  
Ramesh Babu Padamati

The present study aims at comparing the life cycle environmental impacts of polyunsaturated fatty acids production (PUFA) from microalgae and farmed fish. PUFA production from microalgae cultivated via heterotrophy and photoautotrophy was assessed and compared. The primary energy demand (PED) and environmental impacts (EI) of PUFA production from microalgae via heterotrophy were significantly lower compared to PUFA produced via photoautotrophy. Furthermore, PED and EI of PUFA production from fish farmed in marine net pens were assessed. The results indicated that the PED and EI of PUFA production from farmed fish are higher than that produced from microalgae cultivated via heterotrophy. Therefore, the results suggest that PUFA produced from microalgae via heterotrophy could substitute fish oil from an environmental perspective. Furthermore, life cycle analysis results indicate that PUFA derived from microalgae could potentially replace fish oil in the fish feed, thus reducing the pressure on oceans.


Sign in / Sign up

Export Citation Format

Share Document