scholarly journals Distribution Static Compensator Using an Adaptive Observer Based Control Algorithm With Salp Swarm Optimization Algorithm

2021 ◽  
Vol 6 (1) ◽  
pp. 52-62
Author(s):  
Jayadeep Srikakolapu ◽  

In this work, an adaptive observer supported fundamental extractor is developed to estimate the fundamental components of the load current for a three phase distribution static compensator (DSTATCOM) under nonlinear load. Main variations in the proposed work are the fundamental drawing out from the distorted load current and estimation of PI controller gains. With this observer, salp swarm optimization algorithm (SSOA) is used for estimation of DC PI controller and AC PI controller gains. The estimated gains are used for DC bus voltage and AC terminal voltage error minimization respectively. This optimization algorithm commendably progresses the initial random solutions and converge to optimum. Pareto optimal solutions are approximated in SSOA with prodigious convergence and coverage. The SSOA can search unknown spaces and can deal with real world problems for solutions. The suggested control scheme with the optimized gain values has controlled the power quality issues like improving the total harmonic distortion (THD) of grid current and decreasing burden of reactive power on the grid caused due to a nonlinear load. The laboratory performance of the considered system with adaptive observer using d-SPACE-1104 has been provided for implementation work.

Author(s):  
S.R. Reddy ◽  
P.V. Prasad ◽  
G.N. Srinivas

<span>This paper presents study of distribution static compensator (D-STATCOM) for compensation of reactive power, harmonic distortion mitigation and load balancing in three phase three wire nonlinear load distribution system. The proposed control algorithm is developed based on synchronous reference frame theory using PI and FUZZY logic controller. The obtained reference current signal from control algorithm is compared in hysteresis band current controller for better switching of D-STATCOM. The performance of DSTATCOM with PI and fuzzy logic controller is also analysed and compared for DC voltage regulation and harmonic distortion mitigation .The proposed method is provided effective compensation for reactive power, harmonic distortion mitigation and load voltage balancing. The simulation results are obtained using MATLAB/SIMULINK soft ware.</span>


2012 ◽  
Vol 229-231 ◽  
pp. 1030-1033
Author(s):  
Wei Cui ◽  
Lin Chuan Li ◽  
Lei Zhang ◽  
Qian Sun

The reactive power compensation optimization in distribution network has the important meaning in maintaining system voltage stability, decreasing network loss and reducing operation costs. In order to meet factual conditions, we assume the system operates in minimum, normal and maximum three load modes and the objective function of problem includes the costs of power loss and the dynamic reactive power compensation devices allocated. In this paper we use Artificial Immune Algorithm(AIA) and Particle Swarm Optimization Algorithm(PSO) to determine compensate nodes and use the back/forward sweep algorithm calculate load flows. After applied into 28-nodes system, the result demonstrates the method is feasible and effective.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5679
Author(s):  
Mohamed A. M. Shaheen ◽  
Dalia Yousri ◽  
Ahmed Fathy ◽  
Hany M. Hasanien ◽  
Abdulaziz Alkuhayli ◽  
...  

The appropriate planning of electric power systems has a significant effect on the economic situation of countries. For the protection and reliability of the power system, the optimal reactive power dispatch (ORPD) problem is an essential issue. The ORPD is a non-linear, non-convex, and continuous or non-continuous optimization problem. Therefore, introducing a reliable optimizer is a challenging task to solve this optimization problem. This study proposes a robust and flexible optimization algorithm with the minimum adjustable parameters named Improved Marine Predators Algorithm and Particle Swarm Optimization (IMPAPSO) algorithm, for dealing with the non-linearity of ORPD. The IMPAPSO is evaluated using various test cases, including IEEE 30 bus, IEEE 57 bus, and IEEE 118 bus systems. An effectiveness of the proposed optimization algorithm was verified through a rigorous comparative study with other optimization methods. There was a noticeable enhancement in the electric power networks behavior when using the IMPAPSO method. Moreover, the IMPAPSO high convergence speed was an observed feature in a comparison with its peers.


2014 ◽  
Vol 494-495 ◽  
pp. 1857-1860
Author(s):  
Ying Ai ◽  
Hong Wei Nie ◽  
Yi Xin Su ◽  
Dan Hong Zhang ◽  
Yao Peng

In order to reduce the active network loss, increase the power quality and voltage static stability of power system, an index function of multi-objective reactive power optimization is established. Then, an improved adaptive chaotic particle swarm optimization algorithm is proposed to solve the problem. Through the using of cubic chaotic mapping, the particle population is initialized to enhance the diversity of its value; In the optimization process, poor fitness particles are updated with chaos disturbance, and their inertia weight are adjusted dynamically with particles fitness value so as to avoid local convergence. Simulation of IEEE 30 bus system shows that the proposed algorithm for reactive power optimization can avoid premature convergence effectively, and converge to optimal solution rapidly.


Sign in / Sign up

Export Citation Format

Share Document