scholarly journals Economic Dispatch Optimization Using Imperialist Competitive Algorithm (ICA) and compare with PSO algorithm result

2015 ◽  
Vol 15 (2) ◽  
pp. 6541-6545
Author(s):  
Saeid Jalilzadeh ◽  
Saman Nikkhah

Measurement Imperialist Competitive Algorithm (ICA) is a  population based stochastic optimization technique, originallydeveloped by Eberhart and Kennedy, inspired by simulation of a social psychological metaphor instead of the survival of the fittest individual. In ICA, the system (imperialists) is initialized with a population of random solutions (colonies) and searches for optimal using cognitive and social factors by updating generations. ICA has been successfully applied to a wide range of applications, mainly in solving continuous nonlinear optimization problems. Based on the ICA, this paper discusses the use of ICA approach to optimize performance of economic dispatch problems. The proposed method is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects

2021 ◽  
Vol 13 (3) ◽  
pp. 1274
Author(s):  
Loau Al-Bahrani ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
Alex Stojcevski

Few non-traditional optimization techniques are applied to the dynamic economic dispatch (DED) of large-scale thermal power units (TPUs), e.g., 1000 TPUs, that consider the effects of valve-point loading with ramp-rate limitations. This is a complicated multiple mode problem. In this investigation, a novel optimization technique, namely, a multi-gradient particle swarm optimization (MG-PSO) algorithm with two stages for exploring and exploiting the search space area, is employed as an optimization tool. The M particles (explorers) in the first stage are used to explore new neighborhoods, whereas the M particles (exploiters) in the second stage are used to exploit the best neighborhood. The M particles’ negative gradient variation in both stages causes the equilibrium between the global and local search space capabilities. This algorithm’s authentication is demonstrated on five medium-scale to very large-scale power systems. The MG-PSO algorithm effectively reduces the difficulty of handling the large-scale DED problem, and simulation results confirm this algorithm’s suitability for such a complicated multi-objective problem at varying fitness performance measures and consistency. This algorithm is also applied to estimate the required generation in 24 h to meet load demand changes. This investigation provides useful technical references for economic dispatch operators to update their power system programs in order to achieve economic benefits.


2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


2018 ◽  
Vol 6 (6) ◽  
pp. 346-356
Author(s):  
K. Lenin

This paper projects Volition Particle Swarm Optimization (VP) algorithm for solving optimal reactive power problem. Particle Swarm Optimization algorithm (PSO) has been hybridized with the Fish School Search (FSS) algorithm to improve the capability of the algorithm. FSS presents an operator, called as collective volition operator, which is capable to auto-regulate the exploration-exploitation trade-off during the algorithm execution. Since the PSO algorithm converges faster than FSS but cannot auto-adapt the granularity of the search, we believe the FSS volition operator can be applied to the PSO in order to mitigate this PSO weakness and improve the performance of the PSO for dynamic optimization problems. In order to evaluate the efficiency of the proposed Volition Particle Swarm Optimization (VP) algorithm, it has been tested in standard IEEE 30 bus test system and compared to other reported standard algorithms.  Simulation results show that Volition Particle Swarm Optimization (VP) algorithm is more efficient then other algorithms in reducing the real power losses with control variables are within the limits.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 357 ◽  
Author(s):  
Shu-Kai S. Fan ◽  
Chih-Hung Jen

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.


2013 ◽  
Vol 284-287 ◽  
pp. 3135-3139 ◽  
Author(s):  
Jun Lin Lin ◽  
Chun Wei Cho ◽  
Hung Chjh Chuan

Imperialist Competitive Algorithm (ICA) is a new population-based evolutionary algorithm. Previous works have shown that ICA converges quickly but often to a local optimum. To overcome this problem, this work proposed two modifications to ICA: perturbed assimilation move and boundary bouncing. The proposed modifications were applied to ICA and tested using six well-known benchmark functions with 30 dimensions. The experimental results indicate that these two modifications significantly improve the performance of ICA on all six benchmark functions.


2015 ◽  
Vol 785 ◽  
pp. 541-545 ◽  
Author(s):  
K.G. Ing ◽  
Hazlie Mokhlis ◽  
Hazlee Azil Illias ◽  
Jasrul Jamani Jamian ◽  
Muhammad Mohsin Aman

This paper presents a new method to determine the best configuration for a distribution system for a day considering Photovoltaic (PV) generation and load profile. In the first part, the hourly optimal configuration for a day is obtained by using Imperialist Competitive Algorithm (ICA) and in second part; a selective approach based on minimum total daily power loss is used to select the optimal daily configuration. The proposed method is validated on IEEE 33 bus test system.


2012 ◽  
Vol 236-237 ◽  
pp. 1195-1200
Author(s):  
Wen Hua Han

The particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search optimization technique, which has already been widely used to various of fields. In this paper, a simple micro-PSO is proposed for high dimensional optimization problem, which is resulted from being introduced escape boundary and perturbation for global optimum. The advantages of the simple micro-PSO are more simple and easily implemented than the previous micro-PSO. Experiments were conducted using Griewank, Rosenbrock, Ackley, Tablets functions. The experimental results demonstrate that the simple micro-PSO are higher optimization precision and faster convergence rate than PSO and robust for the dimension of the optimization problem.


2013 ◽  
Vol 37 (2) ◽  
pp. 232-242 ◽  
Author(s):  
Ehsan Bijami ◽  
Morteza Jadidoleslam ◽  
Akbar Ebrahimi ◽  
Javad Askari ◽  
Malihe Maghfoori Farsangi

Author(s):  
Maryam Houtinezhad ◽  
Hamid Reza Ghaffary

The goal of optimizing the best acceptable answer is according to the limitations and needs of the problem. For a problem, there are several different answers that are defined to compare them and select an optimal answer; a function is called a target function. The choice of this function depends on the nature of the problem. Sometimes several goals are together optimized; such optimization problems are called multi-objective issues. One way to deal with such problems is to form a new objective function in the form of a linear combination of the main objective functions. In the proposed approach, in order to increase the ability to discover new position in the Imperialist Competitive Algorithm (ICA), its operators are combined with the particle swarm optimization. The colonial competition optimization algorithm has the ability to search global and has a fast convergence rate, and the particle swarm algorithm added to it increases the accuracy of searches. In this approach, the cosine similarity of the neighboring countries is measured by the nearest colonies of an imperialist and closest competitor country. In the proposed method, by balancing the global and local search, a method for improving the performance of the two algorithms is presented. The simulation results of the combined algorithm have been evaluated with some of the benchmark functions. Comparison of the results has been evaluated with respect to metaheuristic algorithms such as Differential Evolution (DE), Ant Lion Optimizer (ALO), ICA, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA).


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Waqas Haider Bangyal ◽  
Abdul Hameed ◽  
Wael Alosaimi ◽  
Hashem Alyami

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


Sign in / Sign up

Export Citation Format

Share Document