Optimal Daily Configuration of a Distribution Network Based on Photovoltaic Generation and System Loading Using Imperialist Competitive Algorithm and Selection Approach

2015 ◽  
Vol 785 ◽  
pp. 541-545 ◽  
Author(s):  
K.G. Ing ◽  
Hazlie Mokhlis ◽  
Hazlee Azil Illias ◽  
Jasrul Jamani Jamian ◽  
Muhammad Mohsin Aman

This paper presents a new method to determine the best configuration for a distribution system for a day considering Photovoltaic (PV) generation and load profile. In the first part, the hourly optimal configuration for a day is obtained by using Imperialist Competitive Algorithm (ICA) and in second part; a selective approach based on minimum total daily power loss is used to select the optimal daily configuration. The proposed method is validated on IEEE 33 bus test system.

Author(s):  
Muhammad Fathi Mohd Zulkefli ◽  
Ismail Musirin ◽  
Shahrizal Jelani ◽  
Mohd Helmi Mansor ◽  
Naeem M. S. Honnoon

<span>Distribution generation (DG) is a widely used term to describe additional supply to a power system network. Normally, DG is installed in distribution network because of its small capacity of power. Number of DGs connected to distribution system has been increasing rapidly as the world heading to increase their dependency on renewable energy sources. In order to handle this high penetration of DGs into distribution network, it is crucial to place the DGs at optimal location with optimal size of output. This paper presents the implementation of Embedded Adaptive Mutation Evolutionary Programming technique to find optimal location and sizing of DGs in distribution network with the objective of minimizing real power loss. 69-Bus distribution system is used as the test system for this implementation. From the presented case studies, it is found that the proposed embedded optimization technique successfully determined the optimal location and size of DG units to be installed in the distribution network so that the real power loss is reduced.</span>


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Koong Gia Ing ◽  
H. Mokhlis ◽  
H. A. Illias ◽  
M. M. Aman ◽  
J. J. Jamian

Network reconfiguration is an effective approach to reduce the power losses in distribution system. Recent studies have shown that the reconfiguration problem considering load profiles can give a significant improvement on the distribution network performance. This work proposes a novel method to determine the optimal daily configuration based on variable photovoltaic (PV) generation output and the load profile data. A good combination and coordination between these two varying data may give the lowest power loss in the system. Gravitational Search Algorithm (GSA) is applied to determine the optimum tie switches positions for 33-Bus distribution system. GSA based proposed method is also compared with Evolutionary Programming (EP) to examine the effectiveness of GSA algorithm. Obtained results show that the proposed optimal daily configuration method is able to improve the distribution network performance in term of its power loss reduction, number of switching minimization and voltage profile improvement.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1730-1743
Author(s):  
Ahmed H. Mashal ◽  
Rashid H. AL-Rubayi ◽  
Mohammed K. Abd

Contemporary researches offer that most researchers have concentrated on either network reconfiguration or Distributed Generation (DG) units insertion for boosting the performance of the distribution system (DS). However, very few researchers have been studied optimum simultaneous distributed generation units insertion and distribution networks reconfiguration (OSDGIR). In this paper, the stochastic meta-heuristic technique belong to swarm intelligence algorithms is proposed. Salp Swarm Algorithm (SSA) is inspired by the behavior of salps when navigating and foraging in the depth of the ocean. It utilized in solving OSDGIR. The objective function is to reduce power loss and voltage deviation in the Distribution System. The SSA is carried out on two different systems: IEEE 33-bus and local Iraqi radial (AL-Fuhood distribution network). Three cases are implemented; only reconfiguration, only DG units insertion, and OSDGIR. Promising results were obtained, where that power loss reduced by 93.1% and recovery voltage index enhanced by 5.4% for the test system and by 78.77% reduction in power loss and 8.2% improvement in recovery voltage for AL-Fuhood distribution network after applying OSDGIR using SSA. Finally, SSA proved effectiveness after an increase in test system loads by different levels in terms of reduced power loss and voltage deviation comparison with other methods


Author(s):  
Machrus Ali ◽  
Dwi Ajiatmo ◽  
Muhammad Ruswandi Djalal

The reconfiguration distribution network is used to reset the network configuration form by opening and closing switches on the distribution network. Reconfiguration is expected to reduce power losses and improve distribution system reliability. Many feeders and buses on the network if calculated manually will be difficult and require a very long time. So the solution of the problem must use artificial intelligence or Artificial Intelligent (AI). Imperialist Competitive Algorithm (ICA) widely used research in solving the optimization problem. Some studies comparing ICA with other artificial intelligence and ICA produce better results than other artificial intelligence. MICA is an ICA modification designed to solve a discrete combination of optimizations. MICA can find the best network reconfiguration so that it can reduce power loss by 35,7928% and fix voltage 0,0185 pu. This method can later use other artificial intelligence or can be applied to other repeater. So it can be used for recommendations to PT. PLN (Persero)


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


2014 ◽  
Vol 672-674 ◽  
pp. 956-960
Author(s):  
Ke Huang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Ling Liu

To analyze the influence of distribution network with grid-connected photovoltaic (PV) generation on the power supply reliability, in this paper it firstly regards interconnected PV generation as an equivalent generator with rated capacity as well as the island operation mode of PV to set up a model for reliability calculation and analysis. Based on the network equivalent method, the structure of distribution system with PV is simplified and then the reliability indexes of distribution system are worked out based on Failure Mode and Effects Analysis (FMEA). At last, a comparative calculation between the distribution network with incorporated PV generations and that without PV generations is made. After analyzing a real example, the results suggest that integrating PV power generations reasonably into the distribution network can enhance the reliability of whole distribution system.


2011 ◽  
Vol 130-134 ◽  
pp. 2948-2952
Author(s):  
Hong Liang Wang ◽  
Lin Chuan Li

Reactive power compensation of distribution network is an important method to improve power quality and voltage stability, while reducing the power loss of the distribution network. In this paper the objective function is built to minimize all the costs which include power loss costs and investment of the dynamic reactive power compensation device divided into each year. The actual operation of the distribution network is simulated considering light, normal and heavy load operation conditions. Bacterial colony chemotaxis (BCC) algorithm is used to determine which nodes to install the compensation devices. The calculation of reactive power compensation is done with the back/forward sweep algorithm adapting to the radial distribution system. In order to compensate three different load conditions separately, the fixed part and the switching part of the dynamic reactive power compensation device are used. This method applies to 28-node system, the result demonstrates that the method is feasible and effective.


Author(s):  
Thuan Thanh Nguyen

Installation of distribution generation (DG) in the distribution system gains many technical benefits. To obtain more benefits, the location and size of DG must be selected with the appropriate values. This paper presents a method for optimizing location and size of DG in the distribution system based on enhanced sunflower optimization (ESFO) to minimize power loss of the system. In which, based on the operational mechanisms of the original sunflower optimization (SFO), a mutation technique is added for updating the best plant. The calculated results on the 33 nodes test system have shown that ESFO has proficiency for determining the best location and size of DG with higher quality than SFO. The compared results with the previous methods have also shown that ESFO outperforms to other methods in term of power loss reduction. As a result, ESFO is a reliable approach for the DG optimization problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Balakumar ◽  
Akililu Getahun ◽  
Samuel Kefale ◽  
K. Ramash Kumar

Voltage stability and line losses are inevitable issues even in modern power systems. There are several techniques that emerged to solve problems in the power system to provide quality and uninterrupted supply to customers. The algorithms used in this paper to determine the appropriate location and size of the Static Var Compensator (SVC) in the Distribution Network (DN) are Moth Flame Optimization (MFO) and Particle Swarm Optimization (PSO). The objective function is defined to minimize voltage deviation and power loss. The burning problem of voltage stability improvement current scenario is because of a rise in electricity demands in all sectors. Paramount duties of power engineers are to keep the system stable and maintain voltage magnitude constant even during peak hours. The results were checked with the aid of MATLAB on Wolaita Sodo radial distribution of 34 bus data networks. The potential use of SVC is key to solve distribution system power quality issues and estimating the advantage of the installation. The results obtained from the test system were compared with PSO results. This comparison was done to know the computational time of proposed techniques. The performance of the MFA based SVC was superior in distribution system and highlighted the importance of device.


Sign in / Sign up

Export Citation Format

Share Document