scholarly journals New Conditions of The Existence of Fixed Point in Δ- Ordered Δ Banach Algebra

2020 ◽  
Vol 18 ◽  
pp. 60-71
Author(s):  
Boushra Hussein

The main idea is to construct a new algebra and find new necessary and sufficient conditions equivalent to the existence of a fixed point. In this work, an algebra is constructed, called Δ - ordered Banach algebra, we define convergent in this new space, Topological structure on  Δ ordered Banach Algebra and prove this as Hausdorff space. Also, we define new conditions as Δ- lipshtiz,, Δ- contraction  contraction , in this algebra construct, we prove this condition is the existence and uniqueness results of the fixed point. In this paper,  we prove a common fixed point if the self-functions satisfy the new condition which is called Ф-contraction.  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ameth Ndiaye ◽  
Fulgence Mansal

In this paper, we study a Volterra–Fredholm integro-differential equation. The considered problem involves the fractional Caputo derivatives under some conditions on the order. We prove an existence and uniqueness analytic result by application of the Banach principle. Then, another result that deals with the existence of at least one solution is delivered, and some sufficient conditions for this result are established by means of the fixed point theorem of Schaefer. Ulam stability of the solution is discussed before including an example to illustrate the results of the proposal.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Boushra Y. Hussein

This paper aims at determining the measure of Q under necessary and sufficient conditions. The measure is an equivalent measure for identifying the given P such that the process with respect to P is the deflator locally martingale. The martingale and locally martingale measures will coincide for the deflator process discrete time. We define s-viable, s-price system, and no locally free lunch in ordered Banach algebra and identify that the s-price system C,π is s-viable if and only a character functional ψC≤π exists. We further demonstrate that no locally free lunch is a necessary and sufficient condition for the equivalent martingale measure Q to exist for the deflator process and the subcharacter ϕ∈Γ such that φC=π. This paper proves the existence of more than one condition and that all conditions are equivalent.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed S. Abdo ◽  
Thabet Abdeljawad ◽  
Kishor D. Kucche ◽  
Manar A. Alqudah ◽  
Saeed M. Ali ◽  
...  

AbstractIn this paper, we obtain sufficient conditions for the existence and uniqueness results of the pantograph fractional differential equations (FDEs) with nonlocal conditions involving Atangana–Baleanu–Caputo (ABC) derivative operator with fractional orders. Our approach is based on the reduction of FDEs to fractional integral equations and on some fixed point theorems such as Banach’s contraction principle and the fixed point theorem of Krasnoselskii. Further, Gronwall’s inequality in the frame of the Atangana–Baleanu fractional integral operator is applied to develop adequate results for different kinds of Ulam–Hyers stabilities. Lastly, the paper includes an example to substantiate the validity of the results.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


1957 ◽  
Vol 9 ◽  
pp. 443-449 ◽  
Author(s):  
M. J. Mansfield

A. H. Stone (9), E. Michael (3, 4), J. L. Kelley and J. S. Griff en (2) have established many necessary and sufficient conditions that a regular Hausdorff space be paracompact. It is the purpose of this note to show that if the word “countable” is inserted in the appropriate places in the above-mentioned conditions they become, in general, necessary and sufficient conditions that a normal space be countably paracompact.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1554 ◽  
Author(s):  
Veronica Ilea ◽  
Diana Otrocol

Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and uniqueness results for the solution of an integral equation with supremum. The paper ends with the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam–Hyers stability result for the corresponding fixed point problem.


Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Xiaoming Wang

AbstractIn this article, we study the existence and uniqueness of solutions of a switched coupled implicit ψ-Hilfer fractional differential system. The existence and uniqueness results are obtained by using fixed point techniques. Further, we investigate different kinds of stability such as Hyers–Ulam stability and Hyers–Ulam–Rassias stability. Finally, an example is provided to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document