scholarly journals Major and trace element zoning of euhedral garnet in high-grade (> 900 °C) mafic granulite from the Song Ma Suture zone, northern Vietnam

2010 ◽  
Vol 105 (5) ◽  
pp. 268-273 ◽  
Author(s):  
Nobuhiko NAKANO ◽  
Yasuhito OSANAI ◽  
Tatsuro ADACHI
1987 ◽  
Vol 51 (361) ◽  
pp. 345-355 ◽  
Author(s):  
H. R. Rollinson

AbstractAmphibolite blocks from an Archaean (2.9 Ga) trondhjemite-agmatite complex in the Lewisian at Gruinard Bay have a varied trace element and REE content. Whilst some of the variability is attributable to element mobility during high-grade metamorphism and subsequent trondhjemite magmatism, it is for the main part considered to be a primary feature of the amphibolites. The observed trace element and REE chemistry is best explained in terms of source region heterogeneity and suggests a melting regime comparable with that beneath certain types of mid-ocean ridge. There are geochemical similarities between the amphibolites and the Lewisian layered gabbro-ultramafic complexes, and the two may represent the derivative liquid and associated cumulates respectively from a common parent magma. Thus there is a parallel between the processes which generated some Archaean amphibolites and layered gabbro complexes and those operating beneath modern ocean ridges. Hornblendite and amphibolite pods enclosed within tonalitic gneiss, also found as blocks in the agmatite complex, are geochemically distinct from the main group of amphibolites and are probably of calc-alkaline parentage.


1989 ◽  
Vol 26 (2) ◽  
pp. 215-230 ◽  
Author(s):  
Ralph Kretz ◽  
Peter Jones ◽  
Ron Hartree

Metagabbro complexes in a portion of the Grenville Province lying northwest of Ottawa occur as sheets, cylinders, and irregular bodies within a medium- to high-grade marble–gneiss–amphibolite terrane. The largest bodies (0.5–10 km in greatest dimension) consist principally of felsic metagabbro, mafic metagabbro, and minor metapyroxenite. Major-element and select trace-element analyses show that different complexes contain distinctly different amounts of K and other elements resulting in different interelement trends.Microstructure and microprobe mineral analyses provide evidence that the following metamorphic changes have occurred: (i) recrystallization of Ca pyroxene, orthopyroxene, and plagioclase; (ii) reaction of Mg-rich olivine with plagioclase to produce reaction zones consisting of orthopyroxene and a hornblende–spinel intergrowth; (iii) reaction of Mg–Fe olivine with plagioclase to produce garnet and hornblende; (iv) production of anthophyllite and hornblende from orthopyroxene and plagioclase; (v) production of hornblende (locally as rims about Ca pyroxene) from Ca pyroxene and plagioclase; (vi) crystallization of biotite, possibly by reaction between orthopyroxene and K-feldspar; and (vii) crystallization of small inclusions of spinel and ilmenite in Ca pyroxene and of spinel and biotite in plagioclase.With regard to the reaction olivine + plagioclase = orthopyroxene + hornblende + spinel, the anorthite and locally the forsterite components were extracted preferentially from plagioclase and olivine; K and Ti (for hornblende) and Zn (for spinel) were evidently obtained from the surrounding minerals; and H, F, and Cl (for hornblende) were obtained from beyond the gabbro bobies. Locally the reaction occurred within large crystals of Ca pyroxene where embedded olivine and plagioclase crystals were in contact.The production of hornblende rims about Ca pyroxene evidently involved plagioclase as a reactant, but the rims formed regardless of the contacting minerals. For example, rims were locally produced where Ca-pyroxene crystals were embedded in large crystals of orthopyroxene.Application of five geothermometers to crystals of both igneous and metamorphic origin yield temperatures of about 700 °C, similar to temperatures recorded for the enclosing marble and gneiss.


Sign in / Sign up

Export Citation Format

Share Document