Perception of a Border Defined by Rapidly Reversing Luminance Contrast

1997 ◽  
Vol 84 (3) ◽  
pp. 739-746
Author(s):  
Kyoungmin Lee ◽  
Joy Hirsch

We report a new visual illusion of a perceptual boundary visible between two contiguous regions of equal luminance when the intensity is modulated with a temporal frequency that is higher than the critical fusion rate. Measurements of the luminance threshold of the perceptual border with various slopes of the luminance gradient yielded a function suggestive of the range of ocular instability. These findings raise the possibility that this new border illusion may be influenced by involuntary ocular motion during fixation.

2016 ◽  
Vol 115 (5) ◽  
pp. 2349-2358 ◽  
Author(s):  
Nina Riddell ◽  
Laila Hugrass ◽  
Jude Jayasuriya ◽  
Sheila G. Crewther ◽  
David P. Crewther

Electroretinogram (ERG) studies have demonstrated that the retinal response to temporally modulated fast-ON and fast-OFF sawtooth flicker is asymmetric. The response to spatiotemporal sawtooth stimuli has not yet been investigated. Perceptually, such drifting gratings or diamond plaids shaded in a sawtooth pattern appear brighter when movement produces fast-OFF relative to fast-ON luminance profiles. The neural origins of this illusion remain unclear (although a retinal basis has been suggested). Thus we presented toad eyecups with sequential epochs of sawtooth, sine-wave, and square-wave gratings drifting horizontally across the retina at temporal frequencies of 2.5–20 Hz. All ERGs revealed a sustained direct-current (DC) transtissue potential during drift and a peak at drift offset. The amplitudes of both phenomena increased with temporal frequency. Consistent with the human perceptual experience of sawtooth gratings, the sustained DC potential effect was greater for fast-OFF cf. fast-ON sawtooth. Modeling suggested that the dependence of temporal luminance contrast on stimulus device frame rate contributed to the temporal frequency effects but could not explain the divergence in response amplitudes for the two sawtooth profiles. The difference between fast-ON and fast-OFF sawtooth profiles also remained following pharmacological suppression of postreceptoral activity with tetrodotoxin (TTX), 2-amino-4-phosphonobutric acid (APB), and 2,3 cis-piperidine dicarboxylic acid (PDA). Our results indicate that the DC potential difference originates from asymmetries in the photoreceptoral response to fast-ON and fast-OFF sawtooth profiles, thus pointing to an outer retinal origin for the motion-induced drifting sawtooth brightness illusion.


1995 ◽  
Vol 12 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Pascal Girard ◽  
Maria Concetta Morrone

AbstractThis study investigates the receptive-field structure of mechanisms operating in human color vision, by recording visual evoked potentials (VEPs) to multiharmonic gratings modulated either in luminance or color (red-green). Varying the Fourier phase of the harmonics from 0 deg to 90 deg produced a family of stimulus profiles that varied from lines to edges. The stimuli were contrast reversed to elicit steady-state VEPS, and also randomly jittered (at a higher temporal frequency than the contrast reversal) to ensure that the evoked response resulted from the polarity reversal, rather than from local variation of luminance or color. Reliable VEPs were recorded from both luminance and chromatic stimuli at all phases, suggesting that the mechanisms sensitive to chromatic contrast and those sensitive to luminance contrast have both symmetric and asymmetric receptive fields. Contrast thresholds estimated by extrapolation of the contrast response curves were very similar to psychophysical thresholds for phase discrimination, suggesting that the VEP response is generated by mechanisms mediating phase discrimination. The results support the idea that human color mechanisms have receptive fields with a variety of spatial symmetries (including odd- and even-symmetric fields) and that these mechanisms may contribute to phase discrimination of chromatic stimuli in a similar way to what has been suggested for luminance vision.


1994 ◽  
Vol 11 (5) ◽  
pp. 873-884 ◽  
Author(s):  
Concetta Morrone ◽  
Adriana Fiorentini ◽  
Silvia Bisti ◽  
Vittorio Porciatti ◽  
David C. Burr

AbstractWe have recorded steady-state PERGs from five macaque monkeys in response to red-green plaid patterns reversed sinusoidally in contrast. The patterns had either a pure luminance contrast (red-black, green-black, yellow-black), pure red-green color contrast, or a variable amount of luminance and color contrast. By varying the relative luminance of the red-to-total luminance (color ratio) of red-green patterns, a value could be obtained at which the PERG amplitude was either minimum or locally maximum, and the phase was most lagged. This value was very similar to that producing equiluminance in human observers, and was considered to be equiluminance for the monkey. The phase of the PERG to chromatic stimulus was systematically lagged compared with that to luminance stimuli, by an amount corresponding to about 10–20 ms under our experimental conditions. The variation of phase with temporal frequency suggested an apparent latency of about 80 ms for color contrast compared with 63 ms for luminance. These estimates were confirmed with separate measurements of transient PERGs to abrupt contrast reversal. As a function of temporal frequency, the chromatic PERG function was clearly low-pass with a cutoff around 15 Hz, whereas that to luminance was double-peaked and extended to higher temporal frequencies, around 30 Hz. For both luminance and chromatic stimuli, the amplitude of PERGs increases with increasing stimulus contrast. By summing vectorially the luminance and chromatic responses of appropriate contrasts, we were able to predict with accuracy the response as a function of color ratio. In two monkeys, the optic chiasm was sectioned sagittally causing total degeneration of ganglion cells in the nasal retina, without affecting the temporal retina (verified by histology). In these animals, there was a strong response to both luminance and chromatic patterns in the temporal retinae, but none to either type of pattern in the nasal retinae, suggesting that the PERG to both luminance and chromatic stimuli arises from the inner-retinal layers. Electrophysiological studies suggest that the PERG to chromatic stimuli is probably associated with the activity of P-cells. P-cells may also make a major contribution to the PERG of luminance stimuli, although M-cells may also participate. The above findings on normal monkeys all agree with those reported in the accompanying paper for humans (Morrone et al., 1994), so similar conclusions can probably be extended to human PERG.


Perception ◽  
1985 ◽  
Vol 14 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Eva Wong ◽  
Naomi Weisstein

Flickering regions of the visual field are perceived to lie well behind regions which are not flickered. The depth segregation is not due to luminance differences since the average temporal luminance across all the regions was equal. This depth effect produced by flicker is not dependent on the texture of the visual field; nor does it depend on a specific configuration of the flickering and nonflickering areas. It is optimal at a temporal frequency around 6 Hz, which suggests that visual channels responding maximally to high temporal frequencies are involved in the segregation of perceptual regions in depth.


Author(s):  
Kevin B. Bennett

Animated mimic displays represent the physical structure of a system, including: 1) the important components, systems, or subsystems, 2) the physical/causal connections between components, and 3) the flow of information or resources through these connections. This type of display has the potential to improve both the effectiveness of real-time performance and the efficiency of training. A research program has been initiated to determine critical factors in the design of animated mimic displays. The initial display designs were based on examples of animated mimic displays found in the literature. Four sets of psychophysical experiments investigated 1) chromatic/luminance contrast, 2) spatial/temporal frequency, 3) contours/borders, and 4) stairstep/sinusoidal waveforms. The first two sets of experiments revealed that existing designs were not effective. A theoretical explanation was developed and is discussed briefly. The second two sets of experiments investigated alternative display designs based, in part, upon these theoretical insights. The results indicate that the alternative designs will improve the effectiveness of animated mimic displays. A set of design guidelines are provided.


2004 ◽  
Vol 01 (04) ◽  
pp. 357-369
Author(s):  
ZHONGKANG LU ◽  
ZHERU CHI

The Human Visual Systems (HVSs) is imperfect and contains highly selective visual acquisition sensors. Not all useful information presented to human eyes can be perceived. Generally, a technique to determine whether a signal can be perceived and how well it can be perceived is called human visual sensitivity analysis. More than one hundred years of psychophysical research on HVSs has revealed that human visual sensitivity is not only determined by local characteristics of visual contents (luminance, contrast orientation, spatial and temporal frequency), but also global modulatory factors (visual attention and motion suppression). In this paper, we provide a review on various factors that affect human visual sensitivity and on various computational models for human visual sensitivity. A comparative study on the performance of various visual sensitivity models by simulations is also reported in the paper. Subjective evaluation on noise-embedded video sequences confirms that the introduction of global modulatory factors does improve the performance of the Just Noticeable Difference (JND) profile used in noise shaping.


1989 ◽  
Vol 3 (3) ◽  
pp. 213-223 ◽  
Author(s):  
J. B. Troy ◽  
G. Einstein ◽  
R. P. Schuurmans ◽  
J. G. Robson ◽  
Ch. Enroth-Cugell

AbstractPerhaps 35% of all of the ganglion cells of the cat do not have classical center-surround organized receptive fields. This paper describes, quantitatively, the responses of two such cell types to stimulation with sinusoidal luminance gratings, whose spatial frequency, mean luminance, contrast, and temporal frequency were varied independently. The patterns were well-focused on the retina of the anesthetized and paralyzed cat. In one type of cell, the maintained discharge was depressed or completely suppressed when a contrast pattern was imaged onto the receptive field (suppressed-by-contrast cell). In the other type of cell, the introduction of a pattern elicited a burst of spikes (impressed-by-contrast cell).When stimulated with drifting gratings, the cell's mean rate of discharge was reduced (suppressed-by-contrast cell) or elevated (impressed-by-contrast cell) over a limited band of spatial frequencies. There was no significant modulated component of response. The reduction in mean rate of suppressed-by-contrast cells caused by drifting gratings had a monotonic dependence on contrast, a relatively low-pass temporal-frequency characteristic and was greater under photopic than mesopic illuminance. If gratings of spatial frequency, that when drifted evoked a response from these cells, were instead held stationary and contrast-reversed, the mean rate of a suppressed-by-contrast cell was also reduced and that of an impressed-by-contrast cell increased. But, for contrast-reversed gratings, the discharge contained substantial modulation at even harmonic frequencies, the largest being the second harmonic. The amplitude of this second harmonic did not depend on the spatial phase of the grating, and its dependence on spatial frequency, at least for suppressed-by-contrast cells, was similar to that of the reduction in mean rate of discharge. Our results suggest that the receptive fields of suppressed-by-contrast and impressed-by-contrast cells can be modeled with the general form of the nonlinear subunit components of Hochstein and Shapley's (1976) Y cell model.


2020 ◽  
Vol 14 ◽  
Author(s):  
Junxiang Luo ◽  
Zheyuan Chen ◽  
Yiliang Lu ◽  
Lothar Spillmann ◽  
Ian Max Andolina ◽  
...  

In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion “racing” along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bruna Rafaela Silva Sousa ◽  
Terezinha Medeiros Gonçalves Loureiro ◽  
Paulo Roney Kilpp Goulart ◽  
Maria Izabel Tentes Cortes ◽  
Marcelo Fernandes Costa ◽  
...  

Abstract Many studies have examined how color and luminance information are processed in the visual system. It has been observed that chromatic noise masked luminance discrimination in trichromats and that luminance thresholds increased as a function of noise saturation. Here, we aimed to compare chromatic noise inhibition on the luminance thresholds of trichromats and subjects with severe deutan or protan losses. Twenty-two age-matched subjects were evaluated, 12 trichromats and 10 with congenital color vision impairment: 5 protanopes/protanomalous, and 5 deuteranopes/deuteranomalous. We used a mosaic of circles containing chromatic noise consisting of 8 chromaticities around protan, deutan, and tritan confusion lines. A subset of the circles differed in the remaining circles by the luminance arising from a C-shaped central target. All the participants were tested in 4 chromatic noise saturation conditions (0.04, 0.02, 0.01, 0.005 u′v′ units) and 1 condition without chromatic noise. We observed that trichromats had an increasing luminance threshold as a function of chromatic noise saturation under all chromatic noise conditions. The subjects with color vision deficiencies displayed no changes in the luminance threshold across the different chromatic noise saturations when the noise was composed of chromaticities close to their color confusion lines (protan and deutan chromatic noise). However, for tritan chromatic noise, they were found to have similar results to the trichromats. The use of chromatic noise masking on luminance threshold estimates could help to simultaneously examine the processing of luminance and color information. A comparison between luminance contrast discrimination obtained from no chromatic and high-saturated chromatic noise conditions could be initially undertaken in this double-duty test.


1916 ◽  
Vol 13 (5) ◽  
pp. 228-228
Author(s):  
English Bagby
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document