scholarly journals An Application of the X-Ray Stress Measurement to Curved Surface. Residual Stress of Cylindrical Surface.

2000 ◽  
Vol 49 (6) ◽  
pp. 645-650 ◽  
Author(s):  
Taizo OGURI ◽  
Kazuo MURATA ◽  
Katsumi MIZUTANI
2011 ◽  
Vol 681 ◽  
pp. 346-351 ◽  
Author(s):  
Yoshihisa Sakaida ◽  
Shohei Yamashita ◽  
Michiya Manzanka

The hollow circular cylinder specimen of Cr-Mo steel with 0.20 mass% C was carburized in carrier gas and quenched in oil bath. After quenching, the surface residual stress distributions in the radial, axial and hoop directions of the specimen were measured experimentally by x-ray as a function of the distance from the carburized surface. The case depth of the quenched specimen was about 0.8 mm. Diffraction from Fe-211 by Cr-Kα radiation was used to minimize the effect of carbon content gradient on the nonlinearity of 2θ-sin2ψ, because effective x-ray penetration depth was about 5.8 μm at sin2ψ=0. The hardened case layer was gradually removed by electrolytic polishing. X-ray stress measurement was repeated on the polished surface from the carburized surface to the interior. The ψ-splitting was not observed on the carburized surface. The 2θ-sin2ψ diagrams were found to shift from low to high angles in inverse proportion to carbon content. The residual stresses in the hardened case layer were compressive. The maximum compressive residual stresses on the hollow circle and periphery surfaces were about −559 and −544 MPa at the depth of 0.2 and 0.3 mm, respectively. On the other hand, the tensile residual stress was not observed. The full widths at half-maximum intensity of Fe-211 diffraction peaks in the hardened case layer were wider than that of the interior of the specimen. Martensitic transformation of the carbon-rich layer leaded to the broadening of diffraction peaks. Therefore the interior of carburized specimen were deformed elastically to balance the existence of the surface compressive residual stresses.


Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2007 ◽  
Vol 40 (4) ◽  
pp. 675-683 ◽  
Author(s):  
Cristy L. Azanza Ricardo ◽  
Mirco D'Incau ◽  
Paolo Scardi

A new procedure is proposed to determine sub-surface residual stress gradients by laboratory X-ray diffraction measurements at different depths using a chemical layer-removal technique. The standard correction algorithm for stress relaxation due to layer removal is improved by including corrections for X-ray absorption, and by the addition of constraints imposed by the mechanical equilibrium conditions. Besides correcting the data,i.e.providing more reliable through-thickness residual stress trends, the proposed procedure also provides an elastically compatible and plausible estimate of the residual stress inside the component, well beyond the measured region. The application of the model is illustrated for a set of Al-alloy components shot-peened at different Almen intensities. Results are compared with those given by `blind hole drilling', which is an independent and partly destructive method.


2012 ◽  
Vol 625 ◽  
pp. 291-296
Author(s):  
Neng Quan Duan ◽  
Jian Liang Ren ◽  
Rui Qiang Pang

The most suitable diffraction angle of aluminum alloy 3003 used for stress measuring is aimed to be determined in this paper. The experiment makes a stress measurement of a loading aluminum alloy 3003 equal strength beam with the traditional electrical measuring method and the X-ray stress measurement. With the electrical measuring method as reference, the research study the measured values that acquired from the X-ray diffraction method when the diffraction angle are 142° and 156°, and then compare them with that acquired from electrical measuring method. The measurement results demonstrate that the diffraction angle at 156 ° is better than at 142 ° based on the assessment standards of the liner slope and the distribution of data. Thus the optimum diffraction angle for X-ray to measure the macroscopic stress of aluminum alloy 3003 is 156 °. In this paper,the stress caused by the load on the equal strength beam is assumed to be "residual stress" and thus the conclusion has reference values for the standardization of residual stress measurement of aluminum alloy by XRD and has theoretical guiding significance in the production practices.


Sign in / Sign up

Export Citation Format

Share Document