scholarly journals Evaluation of Blind Via Hole Quality on Multi-Layer Printed Wiring Boards by Cu Direct Laser Drilling

2006 ◽  
Vol 55 (3) ◽  
pp. 335-340 ◽  
Author(s):  
Toshiki HIROGAKI ◽  
Eiichi AOYAMA ◽  
Keiji OGAWA ◽  
Ryu MINAGI ◽  
Toshiki MURAKAMI ◽  
...  
Author(s):  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Tsukasa Ayuzawa

This report describes the quality assessment of Blind Via Holes (BVHs) of Printed Wiring Boards (PWBs) drilled by a CO2 laser using Cu-direct drilling. In the Cu-direct drilling method, the copper foil and the build-up layer are melted at the same time, and the surface is treated to increase the laser energy absorbed by the copper foil since an untreated copper surface reflects most of the 10.6-μm-wavelength CO2 laser beam. However, there are few reports dealing with Cu-direct laser drilling of PWBs. In addition, when copper and resin with different processing thresholds are drilled at the same time, occurrences of a defect called overhang have been observed. So, in this report, first we propose a new method using thermography to measure the absorptance of a PWB surface for a CO2 laser. Moreover, we investigate how surface treatment of the outer copper foil influences the quality of a laser-drilled hole. Then, we observe the circumference of a point irradiated with the CO2 laser and explain how melting processes are different from surface treatment. Finally, based on the research we establish a method in order to cut down the overhang length as a parameter of drilled-hole quality. We also show that a high absorptance improves BVH quality.


Author(s):  
Eiichi Aoyama ◽  
Toshiki Hirogaki ◽  
Keiji Ogawa ◽  
Nobuyuki Doi ◽  
Ryu Minagi

This report describes the features of Cu-direct laser drilled hole quality on multi-layer Printed Wiring Boards (PWBs). Cu-direct laser drilling drills the outer copper foil and build-up layer at the same time, which makes it difficult to form a blind via hole (BVH) with high quality because the copper foil has high reflection coefficient for a CO2 laser with wavelength 10.6 μm. Therefore, this study focused on improving drilled hole qualities such as diameter and overhang. First, the influence of laser irradiation conditions on forming BVH and the drilled hole diameter were investigated in detail. Second, a new method employing thermography was proposed in order to evaluate the absorption of copper foil after surface treatment. Third, the effect of mixing fillers into the build-up layer in order to reduce the amount of overhang was shown to be effective both experimentally and theoretically. As a result, it is clear that decreasing the difference in the laser absorption rate of the outer copper foil is an effective means to control the hole diameter and reducing the heat characteristic difference between the outer copper foil and the build-up layer can effectively decrease overhang.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4610 ◽  
Author(s):  
Shoaib Sarfraz ◽  
Essam Shehab ◽  
Konstantinos Salonitis ◽  
Wojciech Suder

Laser drilling is a high-speed process that is used to produce high aspect ratio holes of various sizes for critical applications, such as cooling holes in aero-engine and gas turbine components. Hole quality is always a major concern during the laser drilling process. Apart from hole quality, cost and productivity are also the key considerations for high-value manufacturing industries. Taking into account the significance of improving material removal quantity, energy efficiency, and product quality, this study is performed in the form of an experimental investigation and multi-objective optimisation for three different laser drilling processes (single-pulse, percussion, and trepanning). A Quasi-CW fibre laser was used to produce holes in a 1 mm thick IN 718 superalloy. The impacts of significant process parameters on the material removal rate (MRR), specific energy consumption (SEC), and hole taper have been discussed based on the results collected through an experimental matrix that was designed using the Taguchi method. The novelty of this work focuses on evaluating and comparing the performance of laser drilling methods in relation to MRR, SEC, and hole quality altogether. Comparative analysis revealed single-pulse drilling as the best option for MRR and SEC as the MRR value reduces with percussion and trepanning by 99.70% and 99.87% respectively; similarly, percussion resulted in 14.20% higher SEC value while trepanning yielded a six-folds increase in SEC as compared to single-pulse drilling. Trepanning, on the other hand, outperformed the rest of the drilling processes with 71.96% better hole quality. Moreover, optimum values of parameters simultaneously minimising SEC and hole taper and maximising MRR are determined using multi-objective optimisation.


Sign in / Sign up

Export Citation Format

Share Document