scholarly journals A new pathway of preparation and refined structure of (NH4)2[FeCl5(H2O)]

2013 ◽  
Vol 6 (1) ◽  
pp. 129-132 ◽  
Author(s):  
Darina Lacková ◽  
Iveta Ondrejkovičová ◽  
Marián Koman

Abstract The title compound, (NH4)2[FeCl5H2O] has been prepared by reaction between iron(III) chloride and ammonium chloride which was formed by hydrolysis of isonicotinamide or thionicotinamide in ethanol. The characterization was based on elemental analysis and infrared spectra. The crystal structure of the title compound has been refined by single crystal X-ray diffraction method at 293 K. Crystals are orthorhombic, Pnma, with unit cell parameters: a = 13.760(1) A, b = 9.960(1) A, c = 7.060(1) A, Z = 4 and R = 3.5 %. The iron(III) atom in [FeCl5(H2O)]2- ion is approximately octahedrally coordinated by five Cl atoms and one O atom of H2O molecule. This distortion is caused by the extensively hydrogen-bonded lattice. Structural parameters and IR spectra of similar compounds are compared and discussed.

2008 ◽  
Vol 72 (3) ◽  
pp. 771-783 ◽  
Author(s):  
L. Bindi ◽  
M. D. Welch ◽  
P. Bonazzi ◽  
G. Pratesi ◽  
S. Menchetti

AbstractThe crystal structure of seeligerite, Pb3IO4Cl3, from the San Rafael mine, Sierra Gorda, Chile, was solved in the space group Cmm2, and refined to R = 3.07%. The unit-cell parameters are: a = 7.971(2), b = 7.976(2), c = 27.341(5) Å, V = 1738.3(6) Å3 and Z = 8. The crystal structure consists of a stacking sequence along [001] of square-net layers of O atoms and square-net layers of Cl atoms with Pb+ and I+ cations located in the voids of the packing. As is typical of cations with a stereoactive lone-pair of electrons, Pb2+ and I5+ adopt strongly-asymmetrical configurations. Pb2+ cations occur in a variety of coordination polyhedra, ranging from anticubes and monocapped anticubes to pyramidal ‘one-sided’ coordinations. I5+ is coordinated by a square of four oxygen atoms: I1 and I3 exhibit a ‘one-sided’ coordination, whereas I2 has square-planar coordination.The TEM investigation has revealed additional superlattice reflections (which were not registered by X-ray diffraction (XRD)) in the hk0 diffraction pattern of seeligerite based upon a 0.158 Å-1 square net, which can be interpreted as arising from a 20-cation super-sheet motif (12.6 Å x 12.6 Å), likely related to a further level of Pb-I order superimposed upon the 8-site motif identified by XRD.


2012 ◽  
Vol 27 (3) ◽  
pp. 179-183 ◽  
Author(s):  
Sytle M. Antao

The crystal structure of tin (II) sulphate, SnSO4, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO4 are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) Å, and V = 334.383(1) Å3. The average 〈Sn–O〉 [12] distance is 2.9391(4) Å. However, the Sn2+cation has a pyramidal [3]-coordination to O atoms and the average 〈Sn–O〉 [3] = 2.271(1) Å. If Sn is considered as [12]-coordinated, SnSO4 has a structure similar to barite, BaSO4, and its structural parameters are intermediate between those of BaSO4 and PbSO4. The tetrahedral SO4 group has an average 〈S–O〉 [4] = 1.472(1) Å in SnSO4. Comparing SnSO4 with the isostructural SrSO4, PbSO4, and BaSO4, several well-defined trends are observed. The radii, rM, of the M2+(=Sr, Pb, Sn, and Ba) cations and average 〈S–O〉 distances vary linearly with V because of the effective size of the M2+cation. Based on the trend for the isostructural sulphates, the average 〈Sn–O〉 [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn2+cation.


2015 ◽  
Vol 34 (1) ◽  
pp. 67
Author(s):  
Biserka Prugovečki ◽  
Natalija Ivetić ◽  
Dubravka Matković-Čalogović

<p>The structure of the human cobalt insulin derivative at 1.73 Å resolution is described. Single were prepared by the hanging drop vapour diffusion crystallisation method using Zn-free insulin and cobalt(II) acetate.</p>The crystal structure was determined by the single crystal X-ray diffraction method. The investigated insulin derivative exhibits the T<sub>6</sub> form of insulin and crystallizes in the trigonal system in space group <em>R</em>3, with the unit cell parameters <em>a </em>= <em>b </em>= 81.43 Å and <em>c </em>= 33.75 Å. The two cobalt atoms per insulin hexamer and are octahedrally coordinated by three symmetry-related N<em>ε</em>2 atoms of three HisB10/HisD10 and three oxygen atoms from three water molecules.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


2015 ◽  
Vol 71 (9) ◽  
pp. 1189-1193 ◽  
Author(s):  
Yoshiki Aikawa ◽  
Hiroshi Kida ◽  
Yuichi Nishitani ◽  
Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space groupP21212, with unit-cell parametersa= 123.2,b= 152.4,c= 105.9 Å.


2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


Sign in / Sign up

Export Citation Format

Share Document