scholarly journals The Blood is Rich in Different Types of Mesoderm Derived Stem and Progenitor Cells

2014 ◽  
Vol 64 (2) ◽  
pp. 156-178
Author(s):  
Milica Kovačević Filipović

Abstract The blood and bone marrow have been thoroughly investiagated for more than a century, but we are still gaining surprising new informations. Blood transports different mature cells such as erythrocytes, platelets and granulocytes, but curiously, the blood is also transporting a number of non-differentiated cells of various mesodermal lineages: hematopoietic and mesenchymal stem and progenitor cells, endothelial progenitor cells and very small embryonal like cells are some of the most impressive examples. In adults the bone marrow is the source of practiclly all cells that could be found in the blood. Stem and progenitor cells egress from the bone marrow and home to the bone marrow or various tissues in a highly regulated manner. The fact that the hematopoetic stem and progenitor cells traffic through the blood and repopulate the bone marrow niche is largely explored in stem cell therapy in human medicine. In this review we will briefly describe the main characteristics of stem and progenitor cells, the mechanisms of their mobilization from the bone marrow and homing to target tissues. Also, the history and importance of the fact that different stem, progenitor and precursor cells could be isolated from the blood circulation will be discussed in the light of informations concerning their use in human and veterinary medicine.

Blood ◽  
2013 ◽  
Vol 122 (14) ◽  
pp. 2346-2357 ◽  
Author(s):  
Jau-Yi Li ◽  
Jonathan Adams ◽  
Laura M. Calvi ◽  
Timothy F. Lane ◽  
M. Neale Weitzmann ◽  
...  

Key Points Ovariectomy expands short-term hemopoietic stem and progenitor cells and improves engraftment and host survival after bone marrow transplantation. T cells are required for ovariectomy to expand hemopoietic stem and progenitor cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Kostandin V. Pajcini ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells which differentiate to maintain and replenish blood lineages throughout life. Due to these characteristics, HSPC transplants represent a cure for patients with a variety of hematological disorders. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. The nervous system has been shown to indirectly influence hematopoiesis by innervating the niche; however, we present a direct route of HSPC regulation via expression of neurotransmitter receptors on HSPC surface. We have identified Gamma Aminobutyric acid (GABA) receptor B subunit 1 (Gabbr1), a hitherto unknown hematopoietic player, as a regulator of HSPC function. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation remains unknown. Based on published RNA-seq data (Nestorowa et al., Blood 2016), we discovered that Gabbr1 is expressed on a subset of HSPCs. We confirmed this expression using RT-qPCR to assay hematopoietic populations in the bone marrow (BM). Surface receptor expression analysis showed that Gabbr1 protein is expressed on a subset of BM HSPCs. To detect GABA, the ligand for Gabbr1 in the BM microenvironment, we utilized imaging mass spectrometry (IMS). We detected regionally specific GABA signal in the endosteal region of the BM. We further identified B cells as a cellular source of GABA in the BM. To understand the role of Gabbr1 in hematopoiesis, we generated CRISPR-Cas9 Gabbr1 null mutants on a C57/BL6 background suitable for hematopoietic studies and studied their hematopoietic phenotype. We discovered a decrease in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but the long-term hematopoietic stem cells (LT-HSCs) remain unaffected. Further analysis of peripheral blood of Gabbr1 null mutants showed decreased white blood cells due to reduced B220+ cells. This differentiation defect was confirmed in an in vitro differentiation assay where Gabbr1 null HSPCs displayed an impaired ability to produce B cells. We show that Gabbr1 null HSCs show diminished reconstitution ability when transplanted in a competitive setting. Reduced Gabbr1 null HSC reconstitution persisted in secondary transplant recipients indicating a cell autonomous role for Gabbr1 in regulating reconstitution of HSCs in transplant recipients. Our results show a crucial role for Gabbr1 in HSPC regulation and may translate to human health as a rare human SNP within the GABBR1 locus that correlates with altered leukocyte counts has been reported (Astle et al., Cell 2016). Our studies indicate an important role for Gabbr1 in HSPC reconstitution and differentiation into B cell lineages. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 496-496
Author(s):  
Stefan P. Tarnawsky ◽  
Mervin C. Yoder ◽  
Rebecca J. Chan

Juvenile Myelomonocytic Leukemia (JMML) is a rare childhood myelodysplastic / myeloproliferative overlap disorder. JMML exhibits myeloid populations with mutations in Ras-Erk signaling genes, most commonly PTPN11, which confer growth hypersensitivity to GM-CSF. While allogeneic hematopoietic stem cell transplant (HSCT) is the treatment of choice for children with JMML, 50% of children succumb to leukemia relapse; however, the mechanism leading to this high relapse rate is unknown. We hypothesized that the hyperinflammatory nature of JMML may damage the bone marrow microenvironment, leading to poor engraftment of normal donor cells following transplant, permitting residual leukemia cells to outcompete the normal graft, and thus promoting leukemia relapse. Using Vav1 promoter-directed Cre, we generated a mouse model of JMML that conditionally expresses gain-of-function PTPN11D61Yin utero during development. While PTPN11D61Y/+; VavCre+embryos did not demonstrate in utero lethality, we observed a modest reduction of PTPN11D61Y/+; VavCre+ mice at the time of weaning compared to predicted Mendelian frequencies. Further, surviving PTPN11D61Y/+; VavCre+ mice developed elevated peripheral blood leukocytosis and monocytosis as early as 4 weeks of age compared to PTPN11+/+; VavCre+ controls. To address the hypothesis that an aberrant bone marrow microenvironment in the PTPN11D61Y/+ mice leads to poor engraftment of wild-type donor cells following transplant, we examined engraftment of wild-type hematopoietic stem and progenitor cells (HSPCs) in the PTPN11D61Y/+; VavCre+ mice and monitored animals for disease relapse. 16-24 week-old diseased PTPN11D61Y/+; VavCre+ and control PTPN11+/+; VavCre+ mice were lethally irradiated (11 Gy split dose) and transplanted with 5 x 105 CD45.1+ wild-type bone marrow low density mononuclear cells (LDMNCs), which simulates a limiting stem cell dose commonly available in a human HSCT setting. 6 weeks post-HSCT, PTPN11D61Y/+; VavCre+recipients demonstrated an unexpected elevated CD45.1+ donor cell contribution in peripheral blood compared to the control PTPN11+/+; VavCre+ recipients. However, despite superior engraftment in the PTPN11D61Y/+; VavCre+ recipients, these mice had a significantly shorter median survival post-HSCT due to a resurgence of recipient CD45.2-derived leukemic cells. We repeated the experiment using a high dose of CD45.1+ LDMNCs (10 x 106 cells) to determine if providing a saturating dose wild-type cells could prevent the relapse of recipient-derived leukemogenesis and normalize the survival of the PTPN11D61Y/+; VavCre+recipients. While this saturating dose of wild-type cells resulted in high peripheral blood chimerism in both the PTPN11D61Y/+; VavCre+ and PTPN11+/+; VavCre+ recipients, the PTPN11D61Y/+; VavCre+ animals nevertheless demonstrated significantly reduced overall survival. When we examined the cause of mortality in the HSCT-treated PTPN11D61Y/+; VavCre+mice, we found enlarged spleens, hypercellular bone marrow, and enlarged thymuses. Flow cytometry revealed that the majority of cells in the peripheral blood, bone marrow, and spleen were recipient-derived CD45.2+ CD4+ CD8+ T cells. To verify that the disease was neoplastic in origin, secondary transplants into CD45.1/.2 recipients were performed from two independent primary PTPN11D61Y/+; VavCre+and two independent primary PTPN11+/+; VavCre+ controls. Secondary recipients of bone marrow from PTPN11D61Y/+; VavCre+ animals rapidly succumbed to a CD45.2-derived T-cell acute lymphoid leukemia (T-ALL). Previous studies demonstrated that wild-type PTPN11 is needed to protect the integrity of the genome by regulating Polo-like kinase 1 (Plk1) during the mitosis of the cell cycle (Liu et al., PNAS, 2016). We now demonstrate that even when PTPN11 mutant animals are provided with saturating doses of wild-type HSCs, dysregulated residual recipient cells are able to produce relapsed disease. Collectively, these studies highlight the propensity of residual mutant PTPN11 cells to transform after being subjected to mutagenic agents that are commonly used for conditioning regimens prior to allogeneic HSCT. These findings suggest that modified pre-HSCT conditioning regimens bearing reduced mutagenicity while maintaining adequate cytoreductive efficacy may yield lower post-HSCT leukemia relapse in children with PTPN11mutations. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2413-2413 ◽  
Author(s):  
Jingmei Hsu ◽  
Hsuan-Ting Huang ◽  
Chung-Tsai Lee ◽  
Shuqian Yu ◽  
Leonard I. Zon ◽  
...  

Abstract ATP-dependent chromatin remodeling enzymes alter histone/DNA interactions, and are involved in the regulation of transcription, chromosome segregation, DNA replication and repair. We identified Chromodomain Helicase DNA binding protein 7 (CHD7) as a negative regulator of hematopoietic stem cell function. Autosomal dominant CHD7 mutations are associated with CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness). Although several cases of T and B cell immunodeficiency in a subset of CHARGE syndrome patients have been reported, no previous role for CHD7 in hematopoiesis had been proposed. We show that morpholino knockdown of Chd7 in zebrafish embryos results in an increased number of runx1 and c-myb expressing hematopoietic stem and progenitor cells in the aorta/gonad/mesonephros (AGM) region, and this effect is cell autonomous as determined by blastula transplantation. Heterozygous germline Chd7 deletion in mice also results in an increased number of phenotypic hematopoietic stem and progenitor cells (Runx1+c-kit+CD31+) in the AGM region. Downstream lineages such as myeloid and erythroid cells are expanded in zebrafish, and similarly conditional pan-hematopoietic deletion of Chd7 in mice with Vav1-Cre results in myeloid lineage expansion and increased granulocyte/monocyte progenitors. Consistent with these results, microarray analysis of murine CD48- CD150+ Lin- Sca-1+ c-kit+ (SLAM LSK) phenotypic long term repopulating HSCs shows up-regulation of genes in several subclasses of the myeloid lineages. Interestingly, although CHD7 deficient mouse bone marrow had a normal frequency of SLAM LSK cells, it had a two-fold higher frequency of functional LT-HSCs as determined by whole bone marrow, purified LSK and SLAM LSK limiting dilution transplants. ChIP-seq performed in human CD34+ hematopoietic stem and progenitor cells show CHD7 localizes to genes encoding many key hematopoietic transcription factors including MYB and RUNX1. The most abundant transcription factor motif under CHD7 genomic binding sites is a RUNX motif, indicating that CHD7 and Runx1 function together. We show CHD7, Runx1 and c-Myb interact both physically and genetically. CHD7 function in hematopoietic stem cells is dependent on both Runx1 and c-Myb since the increase in hematopoiesis in fish upon morpholino knockdown of Chd7 is abolished when either Runx1 or c-Myb is mutated. In summary, our study identifies CHD7 as a novel evolutionarily conserved negative epigenetic regulator of HSCs and progenitors through its interaction with Runx1 and c-Myb. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1591-1591
Author(s):  
Juliana M. Xavier ◽  
Lauremilia Ricon ◽  
Karla Priscila Vieira ◽  
Longhini Ana Leda ◽  
Carolina Bigarella ◽  
...  

Abstract The microenvironment of the bone marrow (BM) is essential for retention and migration of hematopoietic progenitor cells. ARHGAP21 is a negative regulator of RhoGTPAses, involved in cellular migration and adhesion, however the role of ARHGAP21 in hematopoiesis is unknown. In order to investigate whether downregulation of Arhgap21 in microenvironment modulates bone marrow homing and reconstitution, we generated Arhgap21+/-mice using Embryonic Stem cell containing a vector insertion in Arhgap21 gene obtained from GeneTrap consortium and we then performed homing and bone marrow reconstitution assays. Subletally irradiated (9.5Gy) Arhgap21+/- and wild type (WT) mice received 1 x 106 BM GFP+cells by IV injection. For homing assay, 19 hours after the transplant, Lin-GFP+ cells were analyzed by flow cytometry. In reconstitution and self-renew assays, the GFP+ cell percentage in peripheral blood were analyzed 4, 8, 12 and 16 weeks after transplantation. Hematopoietic stem cells [GFP+Lin-Sca+c-Kit+ (LSK)] were counted after 8 and 16 weeks in bone marrow after primary transplant and 16 weeks after secondary transplant. The percentage of Lin-GFP+ hematopoietic progenitor cells that homed to Arhgap21+/-recipient (mean± SD) (2.07 ± 0.85) bone marrow was lower than those that homed to the WT recipient (4.76 ± 2.60); p=0.03. In addition, we observed a reduction (WT: 4.22 ±1.39; Arhgap21+/-: 2.17 ± 0.69; p=0.001) of Lin- GFP+ cells in Arhgap21+/-receptor spleen together with an increase of Lin- GFP+ population in Arhgap21+/-receptor peripheral blood (WT: 8.07 ± 3.85; Arhgap21+/-: 14.07 ±5.20; p=0.01), suggesting that hematopoietic progenitor cells which inefficiently homed to Arhgap21+/-bone marrow and spleen were retained in the blood stream. In bone marrow reconstitution assay, Arhgap21+/-receptor presented reduced LSK GFP+ cells after 8 weeks (WT: 0.19 ±0.03; Arhgap21+/-0.12±0.05; p=0.02) though not after 16 weeks from primary and secondary transplantation. The reduced LSK percentage after short term reconstitution was reflected in the lower GFP+ cells in peripheral blood 12 weeks after transplantation (WT: 96.2 ±1.1; Arhgap21+/-94.3±1.6; p=0.008). No difference was observed in secondary transplantation, indicating that Arhgap21reduction in microenvironment does not affect normal hematopoietic stem cell self-renewal. The knowledge of the niche process in regulation of hematopoiesis and their components helps to better understand the disordered niche function and gives rise to the prospect of improving regeneration after injury or hematopoietic stem and progenitor cell transplantation. In previous studies, the majority of vascular niche cells were affected after sublethal irradiation, however osteoblasts and mesenchymal stem cells were maintained (Massimo Dominici et al.; Blood; 2009.). RhoGTPase RhoA, which is inactivated by ARHGAP21 (Lazarini et al.; Biochim Biophys acta; 2013), has been described to be crucial for osteoblasts and mesenchymal stem cell support of hematopoiesis (Raman et al.; Leukemia; 2013). Taken together, these results suggest that Arhgap21 expression in bone marrow niche is essential for homing and short term reconstitution support. Moreover, this is the first study to investigate the role of Arhgap21 in bone marrow niche. Figure 1 Reduced homing and short term reconstitution in Arhgap21 +/- recipients. Bone marrow cells from GFP+ mice were injected into wild-type and Arhgap21+/- sublethally irradiated mice. 19 hours after the transplant, a decreased homing was observed to both bone marrow (a) and spleen (b) together with an increase of retained peripheral blood (c) Lin-GFP+ cells. In serial bone marrow transplantation, Arhgap21+/- presented reduced bone marrow LSK GFP+ cells 8 weeks (d) and peripheral blood GFP+ cells 12 weeks (e) after primary transplantation, though not 16 weeks after primary (f) and 16 weeks after secondary (g) transplantations. The result is expressed by means ±SD of 2 independent experiments. Figure 1. Reduced homing and short term reconstitution in Arhgap21+/- recipients. Bone marrow cells from GFP+ mice were injected into wild-type and Arhgap21+/- sublethally irradiated mice. 19 hours after the transplant, a decreased homing was observed to both bone marrow (a) and spleen (b) together with an increase of retained peripheral blood (c) Lin-GFP+ cells. In serial bone marrow transplantation, Arhgap21+/- presented reduced bone marrow LSK GFP+ cells 8 weeks (d) and peripheral blood GFP+ cells 12 weeks (e) after primary transplantation, though not 16 weeks after primary (f) and 16 weeks after secondary (g) transplantations. The result is expressed by means ±SD of 2 independent experiments. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 96-96
Author(s):  
Marta Derecka ◽  
Senthilkumar Ramamoorthy ◽  
Pierre Cauchy ◽  
Josip Herman ◽  
Dominic Grun ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are in daily demand worldwide because of their ability to replenish entire blood system. However, the in vitro expansion of HSPC is still a major challenge since the cues from bone marrow microenvironment remain largely elusive. Signals coming from the bone marrow niche, and specifically mesenchymal stem and progenitor cells (MSPC), orchestrate maintenance, trafficking and stage specific differentiation of HSPCs. Although, it is generally accepted that MSPCs are essential for hematopoietic homeostasis and generating multiple types of stromal cells, the exact transcriptional networks regulating MSPCs are not well established. Early B-cell factor 1 (Ebf1) has been discovered as lineage-specific transcription factor governing B lymphopoiesis. Additionally, it has been shown to play important role in differentiation of adipocytes, which are a niche component supporting hematopoietic regeneration. Thus, in this study we seek to examine if Ebf1 has an alternative function in non-hematopoietic compartment of bone marrow, specifically in mesenchymal stromal cells that maintain proper hematopoiesis. Here, we identified Ebf1 as new transcription regulator of MSPCs activity. Mesenchymal progenitors isolated from Ebf1-/- mice show diminished capacity to form fibroblasticcolonies (CFU-F) indicating reduced self-renewal. Moreover, cells expanded from these colonies display impaired in vitro differentiation towards osteoblasts, chondrocytes and adipocytes. In order to test how this defective MSPCs influence maintenance of HSPCs, we performed long-term culture-initiating cell assay (LTC-IC). After 5 weeks of co-culture of Ebf1-deficient stromal cells with wild type HSPCs we could observe significantly decreased number of cobblestone and CFU colonies formed by primitive HSPCs, in comparison to co-cultures with control stromal cells. Furthermore, in vivo adoptive transfers of wild type HSPCs to Ebf1+/- recipient mice showed a decrease in the absolute numbers of HSPCs in primary recipients and reduced donor chimerism within the HSCP compartment in competitive secondary transplant experiments. Additionally, Prx1-Cre-mediated deletion of Ebf1 specifically in MSPCs of mice leads to reduced frequency and numbers of HSPCs and myeloid cells in the bone marrow. These results confirm that mesenchymal stromal cells lacking Ebf1 render insufficient support for HSPCs to sustain proper hematopoiesis. Interestingly, we also observed a reduced ability of HSPCs sorted from Prx1CreEbf1fl/fl mice to form colonies in methylcellulose, suggesting not only impaired maintenance but also hindered function of these cells. Moreover, HSPCs exposed to Ebf1-deficient niche exhibit changes in chromatin accessibility with reduced occupancy of AP-1, ETS, Runx and IRF motifs, which is consistent with decreased myeloid output seen in Prx1CreEbf1fl/fl mice. These results support the hypothesis that defective niche can cause epigenetic reprograming of HSPCs. Finally, single cell and bulk transcriptome analysis of MSPCs lacking Ebf1 revealed differences in the niche composition and decreased expression of lineage-instructive signals for myeloid cells. Thus, our study establishes Ebf1 as a novel regulator of MSPCs playing a crucial role in the maintenance and differentiation of HSPCs. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 27 (21) ◽  
pp. 1494-1506 ◽  
Author(s):  
Sofieke E. Klamer ◽  
Yvonne L. Dorland ◽  
Marion Kleijer ◽  
Dirk Geerts ◽  
William E. Lento ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document