morpholino knockdown
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 9 (4) ◽  
pp. 46
Author(s):  
Gregory L. Branigan ◽  
Kelly S. Olsen ◽  
Isabella Burda ◽  
Matthew W. Haemmerle ◽  
Jason Ho ◽  
...  

Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.


2021 ◽  
Author(s):  
Shang-Wu Shih ◽  
Jia-Jiun Yan ◽  
Yi-Hsing Wang ◽  
Yi-Ling Tsou ◽  
Ling Chiu ◽  
...  

Estrogen-related receptors (ERRs) are known to function in mammalian kidney as key regulators of ion transport-related genes; however, a comprehensive understanding of the physiological functions of ERRs in vertebrate body fluid ionic homeostasis is still elusive. Here, we used medaka (Oryzias melastigma), a euryhaline teleost, to investigate how ERRs are involved in ion regulation. After transferring medaka from hypertonic seawater to hypotonic freshwater (FW), the mRNA expression levels of errγ2 were highly upregulated, suggesting that ERRγ2 may play a crucial role in ion uptake. In situ hybridization and immunofluorescence staining showed that errγ2 was specifically expressed in ionocytes, the cells responsible for Na+/Cl- transport. In normal FW, ERRγ2 morpholino knockdown caused reductions in the mRNA expression of Na+/Cl- cotransporter (NCC), the number of NCC ionocytes, Na+/Cl- influxes of ionocytes, and whole-body Na+/Cl- contents. In FW with low Na+ and low Cl-, the expression levels of mRNA for Na+/H+ exchanger 3 (NHE3) and NCC were both decreased in ERRγ2 morphants. Treating embryos with DY131, an agonist of ERRγ, increased the whole-body Na+/Cl- contents and ncc mRNA expression in ERRγ2 morphants. As such, medaka ERRγ2 may control Na+/Cl- uptake by regulating ncc and/or nhe3 mRNA expression and ionocyte number, and these regulatory actions may be subtly adjusted depending on internal and external ion concentrations. These findings not only provide new insights into the underpinning mechanism of actions of ERRs, but also enhance our understanding of their roles in body fluid ionic homeostasis for adaptation to changing environments during vertebrate evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew T. Timberlake ◽  
Casey Griffin ◽  
Carrie L. Heike ◽  
Anne V. Hing ◽  
Michael L. Cunningham ◽  
...  

AbstractCraniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10−10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.


2021 ◽  
Author(s):  
Beth Rogers

La-related protein 6 (LARP6) is an RNA binding protein with an intriguing set of functions and interactions. It has an unknown function in the brain that should be investigated further. To do this, we propose to investigate PC12 cells as a model system for studying LARP6 in the brain. PC12 cells have a long history of being used in neurodegenerative models and pharmaceutical testing due to their ability to differentiate into neuronal-like cells. We hypothesize that PC12 cells will make a good model system for studying LARP6 in the brain. In this study, we conducted western blot, PCR, immunofluorescence, IP-MS, and a morpholino knockdown of LARP6 in PC12 cells to assess our hypothesis. We concluded from our results that PC12 cells do not make a good model system for the brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masanori Inoue ◽  
Hiroaki Miyahara ◽  
Hiroshi Shiraishi ◽  
Nobuyuki Shimizu ◽  
Mika Tsumori ◽  
...  

AbstractLeucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb−/−) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb−/− zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb−/− zebrafish. Indeed, excessive autophagy activation was observed in larsb−/− zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.


2021 ◽  
Author(s):  
Samrah Masud ◽  
Rui Zhang ◽  
Tomasz K. Prajsnar ◽  
Annemarie H. Meijer

Dram1 is a stress and infection inducible autophagy modulator that functions downstream of transcription factors p53 and NFκB. Using a zebrafish embryo infection model, we have previously shown that Dram1 provides protection against the intracellular pathogen Mycobacterium marinum by promoting the p62-dependent xenophagy of bacteria that have escaped into the cytosol. However, the possible interplay between Dram1 and other anti-bacterial autophagic mechanisms remains unknown. Recently, LC3-associated phagocytosis (LAP) has emerged as an important host defense mechanism that requires components of the autophagy machinery and targets bacteria directly in phagosomes. Our previous work established LAP as the main autophagic mechanism by which macrophages restrict growth of Salmonella Typhimurium in a systemically infected zebrafish host. We therefore employed this infection model to investigate the possible role of Dram1 in LAP. Morpholino knockdown or CRISPR/Cas9-mediated mutation of Dram1 led to reduced host survival and increased bacterial burden during S. Typhimurium infections. In contrast, overexpression of dram1 by mRNA injection curtailed Salmonella replication and reduced mortality of the infected host. During the early response to infection, GFP-Lc3 levels in transgenic zebrafish larvae correlated with the dram1 expression level, showing over two-fold reduction of GFP-Lc3-Salmonella association in dram1 knockdown or mutant embryos and an approximately 30% increase by dram1 overexpression. Since LAP is known to require the activity of the phagosomal NADPH oxidase, we used a Salmonella biosensor strain to detect bacterial exposure to reactive oxygen species (ROS) and found that the ROS response was largely abolished in the absence of dram1. Together, these results demonstrate the host protective role of Dram1 during S. Typhimurium infection and suggest a functional link between Dram1 and the induction of LAP.


2021 ◽  
pp. 153537022199707
Author(s):  
Xiao Li ◽  
Yuantao Gao ◽  
Feng Tian ◽  
Ruochen Du ◽  
Yitong Yuan ◽  
...  

This study aims to examine whether miR-31 promotes endogenous NSC proliferation and be used for spinal cord injury management. In the present study, the morpholino knockdown of miR-31 induced abnormal neuronal apoptosis in zebrafish, resulting in impaired development of the tail. miR-31 agomir transfection in NSCs increased Nestin expression and decreased ChAT and GFAP expression levels. miR-31 induced the proliferation of mouse NSCs by upregulating the Notch signaling pathway, and more NSCs entered G1; Notch was inhibited by miR-31 inactivation. Injection of a miR-31 agomir into mouse models of spinal cord injury could effectively restore motor functions after spinal cord injury, which was achieved by promoting the proliferation of endogenous NSCs. After the injection of a miR-31 agomir in spinal cord injury mice, the expression of Nestin and GFAP increased, while GFAP expression decreased. In conclusion, the zebrafish experiments prove that a lack of miR-31 will block nervous system development. In spinal cord injury mouse models, miR-31 overexpression might promote spinal cord injury repair.


2021 ◽  
Vol 22 (4) ◽  
pp. 2190
Author(s):  
Philippa Harding ◽  
Maria Toms ◽  
Elena Schiff ◽  
Nicholas Owen ◽  
Suzannah Bell ◽  
...  

EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 100
Author(s):  
Lindy K. Brastrom ◽  
C. Anthony Scott ◽  
Kai Wang ◽  
Diane C. Slusarski

Congenital eye defects represent a large class of disorders affecting roughly 21 million children worldwide. Microphthalmia and anophthalmia are relatively common congenital defects, with approximately 20% of human cases caused by mutations in SOX2. Recently, we identified the RNA-binding motif protein 24a (Rbm24a) which binds to and regulates sox2 in zebrafish and mice. Here we show that morpholino knockdown of rbm24a leads to microphthalmia and visual impairment. By utilizing sequential injections, we demonstrate that addition of exogenous sox2 RNA to rbm24a-deplete embryos is sufficient to suppress morphological and visual defects. This research demonstrates a critical role for understanding the post-transcriptional regulation of genes needed for development.


2021 ◽  
Author(s):  
Hiroshi Shiraishi ◽  
Nobuyuki Shimizu ◽  
Mika Tsumori ◽  
Kyoko Kiyota ◽  
Miwako Maeda ◽  
...  

Abstract Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb-/-) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb-/- zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb-/- zebrafish. Indeed, excessive autophagy activation was observed in larsb-/- zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.


Sign in / Sign up

Export Citation Format

Share Document