scholarly journals TGFBI Expressed by Bone Marrow Niche Cells and Hematopoietic Stem and Progenitor Cells Regulates Hematopoiesis

2018 ◽  
Vol 27 (21) ◽  
pp. 1494-1506 ◽  
Author(s):  
Sofieke E. Klamer ◽  
Yvonne L. Dorland ◽  
Marion Kleijer ◽  
Dirk Geerts ◽  
William E. Lento ◽  
...  
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Adedamola Elujoba-Bridenstine ◽  
Lijian Shao ◽  
Katherine Zink ◽  
Laura Sanchez ◽  
Kostandin V. Pajcini ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells which differentiate to maintain and replenish blood lineages throughout life. Due to these characteristics, HSPC transplants represent a cure for patients with a variety of hematological disorders. HSPC function and behavior is tightly regulated by various cell types and factors in the bone marrow niche. The nervous system has been shown to indirectly influence hematopoiesis by innervating the niche; however, we present a direct route of HSPC regulation via expression of neurotransmitter receptors on HSPC surface. We have identified Gamma Aminobutyric acid (GABA) receptor B subunit 1 (Gabbr1), a hitherto unknown hematopoietic player, as a regulator of HSPC function. GABBR1 is known to be expressed on human HSPCs (Steidl et al., Blood 2004), however its function in their regulation remains unknown. Based on published RNA-seq data (Nestorowa et al., Blood 2016), we discovered that Gabbr1 is expressed on a subset of HSPCs. We confirmed this expression using RT-qPCR to assay hematopoietic populations in the bone marrow (BM). Surface receptor expression analysis showed that Gabbr1 protein is expressed on a subset of BM HSPCs. To detect GABA, the ligand for Gabbr1 in the BM microenvironment, we utilized imaging mass spectrometry (IMS). We detected regionally specific GABA signal in the endosteal region of the BM. We further identified B cells as a cellular source of GABA in the BM. To understand the role of Gabbr1 in hematopoiesis, we generated CRISPR-Cas9 Gabbr1 null mutants on a C57/BL6 background suitable for hematopoietic studies and studied their hematopoietic phenotype. We discovered a decrease in the absolute number of Lin-Sca1+cKit+ (LSK) HSPCs, but the long-term hematopoietic stem cells (LT-HSCs) remain unaffected. Further analysis of peripheral blood of Gabbr1 null mutants showed decreased white blood cells due to reduced B220+ cells. This differentiation defect was confirmed in an in vitro differentiation assay where Gabbr1 null HSPCs displayed an impaired ability to produce B cells. We show that Gabbr1 null HSCs show diminished reconstitution ability when transplanted in a competitive setting. Reduced Gabbr1 null HSC reconstitution persisted in secondary transplant recipients indicating a cell autonomous role for Gabbr1 in regulating reconstitution of HSCs in transplant recipients. Our results show a crucial role for Gabbr1 in HSPC regulation and may translate to human health as a rare human SNP within the GABBR1 locus that correlates with altered leukocyte counts has been reported (Astle et al., Cell 2016). Our studies indicate an important role for Gabbr1 in HSPC reconstitution and differentiation into B cell lineages. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 96-96
Author(s):  
Marta Derecka ◽  
Senthilkumar Ramamoorthy ◽  
Pierre Cauchy ◽  
Josip Herman ◽  
Dominic Grun ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are in daily demand worldwide because of their ability to replenish entire blood system. However, the in vitro expansion of HSPC is still a major challenge since the cues from bone marrow microenvironment remain largely elusive. Signals coming from the bone marrow niche, and specifically mesenchymal stem and progenitor cells (MSPC), orchestrate maintenance, trafficking and stage specific differentiation of HSPCs. Although, it is generally accepted that MSPCs are essential for hematopoietic homeostasis and generating multiple types of stromal cells, the exact transcriptional networks regulating MSPCs are not well established. Early B-cell factor 1 (Ebf1) has been discovered as lineage-specific transcription factor governing B lymphopoiesis. Additionally, it has been shown to play important role in differentiation of adipocytes, which are a niche component supporting hematopoietic regeneration. Thus, in this study we seek to examine if Ebf1 has an alternative function in non-hematopoietic compartment of bone marrow, specifically in mesenchymal stromal cells that maintain proper hematopoiesis. Here, we identified Ebf1 as new transcription regulator of MSPCs activity. Mesenchymal progenitors isolated from Ebf1-/- mice show diminished capacity to form fibroblasticcolonies (CFU-F) indicating reduced self-renewal. Moreover, cells expanded from these colonies display impaired in vitro differentiation towards osteoblasts, chondrocytes and adipocytes. In order to test how this defective MSPCs influence maintenance of HSPCs, we performed long-term culture-initiating cell assay (LTC-IC). After 5 weeks of co-culture of Ebf1-deficient stromal cells with wild type HSPCs we could observe significantly decreased number of cobblestone and CFU colonies formed by primitive HSPCs, in comparison to co-cultures with control stromal cells. Furthermore, in vivo adoptive transfers of wild type HSPCs to Ebf1+/- recipient mice showed a decrease in the absolute numbers of HSPCs in primary recipients and reduced donor chimerism within the HSCP compartment in competitive secondary transplant experiments. Additionally, Prx1-Cre-mediated deletion of Ebf1 specifically in MSPCs of mice leads to reduced frequency and numbers of HSPCs and myeloid cells in the bone marrow. These results confirm that mesenchymal stromal cells lacking Ebf1 render insufficient support for HSPCs to sustain proper hematopoiesis. Interestingly, we also observed a reduced ability of HSPCs sorted from Prx1CreEbf1fl/fl mice to form colonies in methylcellulose, suggesting not only impaired maintenance but also hindered function of these cells. Moreover, HSPCs exposed to Ebf1-deficient niche exhibit changes in chromatin accessibility with reduced occupancy of AP-1, ETS, Runx and IRF motifs, which is consistent with decreased myeloid output seen in Prx1CreEbf1fl/fl mice. These results support the hypothesis that defective niche can cause epigenetic reprograming of HSPCs. Finally, single cell and bulk transcriptome analysis of MSPCs lacking Ebf1 revealed differences in the niche composition and decreased expression of lineage-instructive signals for myeloid cells. Thus, our study establishes Ebf1 as a novel regulator of MSPCs playing a crucial role in the maintenance and differentiation of HSPCs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 88 ◽  
pp. S63
Author(s):  
Trent Hall ◽  
Jeremy Crawford ◽  
Claire Caprio ◽  
Pramika Sriram ◽  
Paul Thomas ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Stem Cells ◽  
1999 ◽  
Vol 17 (6) ◽  
pp. 339-344 ◽  
Author(s):  
John Eugenes Chisi ◽  
Joanna Wdzieczak‐Bakala ◽  
Josiane Thierry ◽  
Cecile V. Briscoe ◽  
Andrew C. Riches

Sign in / Sign up

Export Citation Format

Share Document