scholarly journals Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems

2013 ◽  
Vol 23 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract Fractional positive asymptotically stable continuous-time linear systems are approximated by fractional positive asymptotically stable discrete-time systems using a linear Padé-type approximation. It is shown that the approximation preserves the positivity and asymptotic stability of the systems. An optional system approximation is also discussed.

2016 ◽  
Vol 26 (4) ◽  
pp. 551-563
Author(s):  
Tadeusz Kaczorek

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.


2013 ◽  
Vol 62 (2) ◽  
pp. 345-355 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract The positive asymptotically stable continuous-time linear systems are approximated by corresponding asymptotically stable discrete-time linear systems. Two methods of the approximation are presented and the comparison of the methods is addressed. The considerations are illustrated by three numerical examples and an example of positive electrical circuit.


2013 ◽  
Vol 61 (2) ◽  
pp. 343-347 ◽  
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive switched linear systems for any switchings is addressed. Simple sufficient conditions for the asymptotic stability of positive switched continuous-time and discrete-time linear systems are established. It is shown that the positive switched continuous-time (discrete-time) system is asymptotically stable for any switchings if the sum of entries of every column of the matrices of subsystems is negative (less than 1)


2012 ◽  
Vol 22 (4) ◽  
pp. 451-465 ◽  
Author(s):  
Tadeusz Kaczorek

A new modified state variable diagram method is proposed for determination of positive realizations with reduced numbers of delays and without delays of linear discrete-time systems for a given transfer function. Sufficient conditions for the existence of the positive realizations of given proper transfer function are established. It is shown that there exists a positive realization with reduced numbers of delays if there exists a positive realization without delays but with greater dimension. The proposed methods are demonstrated on a numerical example.


2012 ◽  
Vol 60 (3) ◽  
pp. 605-616
Author(s):  
T. Kaczorek

Abstract The problem of existence and determination of the set of positive asymptotically stable realizations of a proper transfer function of linear discrete-time systems is formulated and solved. Necessary and sufficient conditions for existence of the set of the realizations are established. A procedure for computation of the set of realizations are proposed and illustrated by numerical examples.


2013 ◽  
Vol 61 (2) ◽  
pp. 349-352
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive fractional switched continuous-time linear systems for any switching is addressed. Simple sufficient conditions for the asymptotic stability of the positive fractional systems are established. It is shown that the positive fractional switched systems are asymptotically stable for any switchings if the sum of entries of every column of the matrices of all subsystems is negative.


2013 ◽  
Vol 7 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are example of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercondensators and voltage sources or at least one node with branches with supercoils. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numerical examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Wenguang Luo

The controllability issues for discrete-time linear systems with delay in state and control are addressed. By introducing a new concept, the controllability realization index (CRI), the characteristic of controllability is revealed. An easily testable necessary and sufficient condition for the controllability of discrete-time linear systems with state and control delay is established.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Wenguang Luo

The controllability issues for linear discrete-time systems with delay in state are addressed. By introducing a new concept, the minimum controllability realization index (MinCRI), the characteristic of controllability is revealed. It is proved that the MinCRI of a system with state delay exists and is finite. Based on this result, a necessary and sufficient condition for the controllability of discrete-time linear systems with state delay is established.


Author(s):  
Mikołaj Busłowicz ◽  
Tadeusz Kaczorek

Simple Conditions for Practical Stability of Positive Fractional Discrete-Time Linear SystemsIn the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document