scholarly journals SINGULAR FRACTIONAL CONTINUOUS-TIME AND DISCRETE-TIME LINEAR SYSTEMS

2013 ◽  
Vol 7 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are example of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercondensators and voltage sources or at least one node with branches with supercoils. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numerical examples.

2013 ◽  
Vol 62 (2) ◽  
pp. 345-355 ◽  
Author(s):  
Tadeusz Kaczorek

Abstract The positive asymptotically stable continuous-time linear systems are approximated by corresponding asymptotically stable discrete-time linear systems. Two methods of the approximation are presented and the comparison of the methods is addressed. The considerations are illustrated by three numerical examples and an example of positive electrical circuit.


2017 ◽  
Vol 65 (1) ◽  
pp. 45-51 ◽  
Author(s):  
T. Kaczorek

Abstract The Caputo-Fabrizio definition of the fractional derivative is applied to minimum energy control of fractional positive continuous- time linear systems with bounded inputs. Conditions for the reachability of standard and positive fractional linear continuous-time systems are established. The minimum energy control problem for the fractional positive linear systems with bounded inputs is formulated and solved.


2016 ◽  
Vol 26 (4) ◽  
pp. 551-563
Author(s):  
Tadeusz Kaczorek

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.


2012 ◽  
Vol 60 (2) ◽  
pp. 279-284 ◽  
Author(s):  
M. Busłowicz

Abstract. The stability problem of continuous-time linear systems described by the state equation consisting of n subsystems with different fractional orders of derivatives of the state variables has been considered. The methods for asymptotic stability checking have been given. The method proposed in the general case is based on the Argument Principle and it is similar to the modified Mikhailov stability criterion known from the stability theory of natural order systems. The considerations are illustrated by numerical examples.


2014 ◽  
Vol 62 (3) ◽  
pp. 409-412 ◽  
Author(s):  
T. Kaczorek

Abstract The Drazin inverse of matrices is applied to find the solutions of the state equations of the fractional descriptor continuous-time systems with regular pencils. An equality defining the set of admissible initial conditions for given inputs is derived. The proposed method is illustrated by a numerical example.


2013 ◽  
Vol 23 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Tadeusz Kaczorek

Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform, the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed. The efficiency of the proposed methods is demonstrated on simple numerical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jia-Yu Zhao ◽  
Zhao-Hong Wang ◽  
Jian-De Yan ◽  
Yong-Hong Lan

This paper concerns a Padé-approximation-based preview repetitive control (PRC) scheme for continuous-time linear systems. Firstly, the state space representation of the repetitive controller is transformed into a nondelayed one by Padé approximation. Then, an augmented dynamic system is constructed by using the nominal state equation with the error system and the state equation of a repetitive controller. Next, by using optimal control theory, a Padé-approximation-based PRC law is obtained. It consists of state feedback, error integral compensation, output integral of repetitive controller, and preview compensation. Finally, the effectiveness of the method is verified by a numerical simulation.


2018 ◽  
Vol 19 (12) ◽  
pp. 428-432
Author(s):  
Tadeusz Kaczorek

A new method for computation of positive realizations of given transfer matrices of descriptor linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.


2016 ◽  
Vol 64 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Ł. Sajewski

Abstract Factional Discrete-time linear systems with fractional different orders are addressed. The Weierstrass-Kronecker decomposition theorem of the regular pencil is extended to the descriptor fractional discrete-time linear system with different fractional orders. Using the extension, method for finding the solution of the state equation is derived. Effectiveness of the method is demonstrated on a numerical example.


Author(s):  
Tadeusz Kaczorek

Singular fractional linear systems and electrical circuitsA new class of singular fractional linear systems and electrical circuits is introduced. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and the Laplace transformation, the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional system if it contains at least one mesh consisting of branches only with an ideal supercapacitor and voltage sources or at least one node with branches with supercoils.


Sign in / Sign up

Export Citation Format

Share Document