Influence of Deformation Process by ECAE on Structure and Properties of AZ61 Alloy

2014 ◽  
Vol 59 (1) ◽  
pp. 305-308
Author(s):  
S. Boczkal ◽  
M. Lech-Grega ◽  
B. Płonka

Abstract The structure and properties of AZ61 alloy after deformation by ECAE were characterised. Alloy structure was examined after the successive passes of ECAE process, to study the effect of deformation on the morphology of γ phase precipitates and the size and shape of grains. Based on EBSD analysis, the occurrence of high angle boundaries was stated. An attempt was made to describe the mechanisms that are operating when the deformation route is changed at 300°C in the AZ61 alloy processed by ECAE method. Alloy hardness after the first cycle of deformation was stabilised at the level of 80-90 HB. Based on the hardening curve and the occurrence of high angle grain boundaries (>15°), the possibility of further deformation of the AZ61 alloy was confirmed.

2013 ◽  
Vol 203-204 ◽  
pp. 258-261 ◽  
Author(s):  
Izabela Kalemba ◽  
Krzysztof Muszka ◽  
Mirosław Wróbel ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research addresses the EBSD analysis of friction stir welded 7136-T76 aluminum alloy. The objectives of this study were to evaluate the grain size and their shape, character of grain boundaries in the stirred and thermo-mechanically affected zones, both on the advancing and retreating side as well as to investigate changes in the crystallographic texture. Results of texture analysis indicate the complexity of the FSW process. The texture gradually weakens on moving from the thermo-mechanically affected zone toward the weld center. The stirred zone is characterized by very weak texture and is dominated by high angle boundaries. On the other hand, the thermo-mechanically affected zone exhibits a high frequency of low angle boundaries.


2004 ◽  
Vol 467-470 ◽  
pp. 1277-1282 ◽  
Author(s):  
Sergey V. Dobatkin ◽  
V.I. Kopylov ◽  
Reinhard Pippan ◽  
O.V. Vasil'eva

At present, the possibility of the formation of high-angle grain boundaries upon severe cold deformation, in particular, equal-channel angular (ECA) pressing is reliably proved. The structure formation upon multi-cycle ECA pressing substantially depends on the route determining the shear plane in the sample upon repeated passes. The route is defined by the rotation of the sample around its axis upon the multi-cycle ECA pressing. There are four main routes: route A, in which the sample is deformed by many passes without any rotations; route Ba, in which the sample is rotated by ± 90°; route Bc, in which the sample is sequentially rotated in the same direction by 90°and route C, in which the sample is rotated by 180° about its axis before each subsequent pass. By the methods of SEM, TEM and EBSD analysis it was shown that the fraction of high-angle boundaries in a-Fe upon cold ECA pressing with an angle of 90° between the channels and N=4 depends on the deformation route and increases according to the route sequence: Ba-C-Bc.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


Author(s):  
D.R. Rasmussen ◽  
N.-H. Cho ◽  
C.B. Carter

Domains in GaAs can exist which are related to one another by the inversion symmetry, i.e., the sites of gallium and arsenic in one domain are interchanged in the other domain. The boundary between these two different domains is known as an antiphase boundary [1], In the terminology used to describe grain boundaries, the grains on either side of this boundary can be regarded as being Σ=1-related. For the {110} interface plane, in particular, there are equal numbers of GaGa and As-As anti-site bonds across the interface. The equilibrium distance between two atoms of the same kind crossing the boundary is expected to be different from the length of normal GaAs bonds in the bulk. Therefore, the relative position of each grain on either side of an APB may be translated such that the boundary can have a lower energy situation. This translation does not affect the perfect Σ=1 coincidence site relationship. Such a lattice translation is expected for all high-angle grain boundaries as a way of relaxation of the boundary structure.


Author(s):  
Diane M. Vanderwalker

There is a widespread interest in understanding the properties of Al-base alloys so that progress can be made toward extending their present applications in the aircraft industry. Al-Zn-Mg is precipitation hardened to gain its high strength; however, during aging the formation of heterogeneous precipitates on the grain boundaries creates a precipitate-free zone in the adjacent region. Since high angle grain boundaries are not easily characterized, it is difficult to establish a relationship between the precipitate and the boundary structure. Therefore, this study involves precipitation on low angle grain boundaries where the boundary and the precipitate can be fully analyzed.


Sign in / Sign up

Export Citation Format

Share Document