ebsd analysis
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 54)

H-INDEX

19
(FIVE YEARS 6)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7608
Author(s):  
Asiful H. Seikh ◽  
Muneer Baig ◽  
Ateekh Ur Rehman ◽  
Faraz H. Hashmi ◽  
Jabair A. Mohammed

In the present study, the stress corrosion cracking (SCC) behavior of ECAP Al5083 alloy was investigated in air as well as in 3.5 % NaCl solution using the slow strain rate tensile test (SSRT). The characteristics of grain boundary precipitates (GBPs), specifically the microchemistry of the SCC behavior of Al5083 alloys, both in “as-received” condition and when deformed by the ECAP process, were examined. The correlations between the SCC resistance and GBP microchemistry were examined. A microstructural evaluation was performed using an optical microscope. SCC tests were carried out using a universal tensile testing machine and the fracture surfaces were studied using scanning electron microscopy (SEM). A strain rate of 1×10−6 s−1 was applied for the SSRT. As the passes increased, the SCC susceptibility of the fine-grained ECAP Al5083 alloy also increased. Moreover, higher ultimate tensile strength and greater elongation were observed. This was due to grain refinement, high-density separations, and the expanded extent of high-density dislocations instigated by severe plastic deformation. Due to the high strength and elongation, the failure analysis showed a ductile mode of fracture. Electron backscattering diffraction (EBSD) analysis was performed to determine more clearly the nature of cracking. EBSD analysis showed that the crack propagation occurred in both transgranular and intergranular modes.


2021 ◽  
Vol 181 ◽  
pp. 111478
Author(s):  
Jianjun Yang ◽  
Dongtao Zhang ◽  
Rongchun Zhu ◽  
Xiaochang Xu ◽  
Dan Wu ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 854
Author(s):  
Hidetoshi Hara ◽  
Hiroshi Mori ◽  
Kohei Tominaga ◽  
Yuki Nobe

Low-grade metamorphic temperature conditions associated with the Sanbagawa metamorphic event were estimated by the Raman spectroscopy of carbonaceous material (RSCM) in pelitic rocks and an electron backscatter diffraction (EBSD) analysis of the quartz in siliceous rocks. Analytical samples were collected from the Sanbagawa metamorphic complex, the Mikabu greenstones, and the Chichibu accretionary complex in the eastern Kanto Mountains, central Japan. Previously, low-grade Sanbagawa metamorphism was only broadly recognized as pumpellyite–actinolite facies assigned to the chlorite zone. The RSCM results indicate metamorphic temperatures of 358 °C and 368 °C for the chlorite zone and 387 °C for the garnet zone of the Sanbagawa metamorphic complex, 315 °C for the Mikabu greenstones, and 234–266 °C for the Chichibu accretionary complex. From the EBSD analyses, the diameter of the quartz grains calculated by the root mean square (RMS) approximation ranges from 55.9 to 69.0 μm for the Sanbagawa metamorphic complex, 9.5 to 23.5 μm for the Mikabu greenstones, and 2.9 to 7.3 μm for the Chichibu accretionary complex. The opening angles of the c-axis fabric approximate 40–50°, presenting temperatures of 324–393 °C for the Sanbagawa metamorphic complex and the Mikabu greenstones. The temperature conditions show a continuous increase with no apparent gaps from these low-grade metamorphosed rocks. In addition, there exists an empirical exponential relationship between the estimated metamorphic temperatures and the RMS values of the quartz grains. In this study, integrated analyses of multiple rock types provided valuable information on progressive low-grade metamorphism and a similar approach may be applied to study other metamorphic complexes.


2021 ◽  
Vol 27 (S1) ◽  
pp. 268-269
Author(s):  
Rene de Kloe ◽  
Matthew Nowell
Keyword(s):  
Low Dose ◽  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4237
Author(s):  
Takuma Tanaka ◽  
Togo Sugioka ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Yuya Shimada ◽  
...  

The effect of heat treatment on tensile and low cycle fatigue properties of the oxygen-free copper for electric power equipment was investigated. The heat treatment at 850 °C for 20 min, which corresponds to the vacuum brazing process, caused the grain growth and relaxation of strain by recrystallization, and thus, the residual stress in the oxygen-free copper was reduced. The tensile strength and 0.2% proof stress were decreased, and elongation was increased by the heat treatment accompanying recrystallization. The plastic strain in the heat-treated specimen was increased compared with that in the untreated specimen under the same stress amplitude condition, and thus, the low cycle fatigue life of the oxygen-free copper was degraded by the heat treatment. Striation was observed in the crack initiation area of the fractured surface in the case of the stress amplitude less than 100 MPa regardless of the presence of the heat treatment. With an increase in the stress amplitude, the river pattern and the quasicleavage fracture were mainly observed in the fracture surfaces of the untreated specimens, and they were observed with striations in the fracture surfaces of the heat-treated ones. The result of the electron backscattered diffraction (EBSD) analysis showed that the grain reference orientation deviation (GROD) map was confirmed to be effective to investigate the fatigue damage degree in the grain by low cycle fatigue. In addition, the EBSD analysis revealed that the grains were deformed, and the GROD value reached approximately 28° in the fractured areas of heat-treated specimens after the low cycle fatigue test.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3970
Author(s):  
Wojciech J. Nowak

An electron backscattered diffraction (EBSD) method provides information about the crystallographic structure of materials. However, a surface subjected to analysis needs to be well-prepared. This usually requires following a time-consuming procedure of mechanical polishing. The alternative methods of surface preparation for EBSD are performed via electropolishing or focus ion beam (FIB). In the present study, plasma etching using a glow discharge optical emission spectrometer (GD-OES) was applied for surface preparation for EBSD analysis. The obtained results revealed that plasma etching through GD-OES can be successfully used for surface preparation for EBSD analysis. However, it was also found that the plasma etching is sensitive for the alloy microstructure, i.e., the presence of intermetallic phases and precipitates such as carbides possess a different sputtering rate, resulting in non-uniform plasma etching. Preparation of the cross-section of oxidized CM247 revealed a similar problem with non-uniformity of plasma etching. The carbides and oxide scale possess a lower sputtering rate than the metallic matrix, which caused formation of relief. Based on obtained results, possible resolutions to suppress the effect of different sputtering rates are proposed.


2021 ◽  
Author(s):  
Aaron Cavosie ◽  
Luigi Folco

Table S1: Electron backscatter diffraction (EBSD) analysis conditions<br>


Sign in / Sign up

Export Citation Format

Share Document