scholarly journals A study on certain properties of generalized special functions defined by Fox-Wright function

2020 ◽  
Vol 5 (1) ◽  
pp. 147-162
Author(s):  
Enes Ata ◽  
İ. Onur Kıymaz

AbstractIn this study, motivated by the frequent use of Fox-Wright function in the theory of special functions, we first introduced new generalizations of gamma and beta functions with the help of Fox-Wright function. Then by using these functions, we defined generalized Gauss hypergeometric function and generalized confluent hypergeometric function. For all the generalized functions we have defined, we obtained their integral representations, summation formulas, transformation formulas, derivative formulas and difference formulas. Also, we calculated the Mellin transformations of these functions.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Vandana Palsaniya ◽  
Ekta Mittal ◽  
Sunil Joshi ◽  
D. L. Suthar

The purpose of this research is to provide a systematic review of a new type of extended beta function and hypergeometric function using a confluent hypergeometric function, as well as to examine various belongings and formulas of the new type of extended beta function, such as integral representations, derivative formulas, transformation formulas, and summation formulas. In addition, we also investigate extended Riemann–Liouville (R-L) fractional integral operator with associated properties. Furthermore, we develop new beta distribution and present graphically the relation between moment generating function and ℓ .


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2944
Author(s):  
Shilpi Jain ◽  
Rahul Goyal ◽  
Praveen Agarwal ◽  
Antonella Lupica ◽  
Clemente Cesarano

The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.


2020 ◽  
Vol 1 (1) ◽  
pp. 87-98
Author(s):  
Maisoon A. Kulib ◽  
Ahmed A. Al-Gonah ◽  
Salem S. Barahmah

Motivated mainly by a variety of applications of Euler's Beta, hypergeometric, and confluent hypergeometric functions together with their extensions in a wide range of research fields such asengineering, chemical, and physical problems. In this paper, we introduce modified forms of some extended special functions such as Gamma function, Beta function, hypergeometric function and confluent hypergeometric function by making use of the idea given in reference \cite{9}. Also, certain investigations including summation formulas, integral representations and Mellin transform of these modified functions are derived. Further, many known results are obtained asspecial cases of our main results.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Moustafa El-Shahed ◽  
Ahmed Salem

The paper is devoted to the study of the functionWα,βγ,δ(z), which is an extension of the classical Wright function and Kummer confluent hypergeometric function. The properties ofWα,βγ,δ(z)including its auxiliary functions and the integral representations are proven.


2013 ◽  
Vol 24 (02) ◽  
pp. 1350004
Author(s):  
CHARLES SCHWARTZ

We extend the technique of using the trapezoidal rule for efficient evaluation of the special functions of mathematical physics given by integral representations. This technique was recently used for Bessel functions, and here we treat incomplete gamma functions and the general confluent hypergeometric function.


2021 ◽  
Vol 6 (2) ◽  
pp. 852
Author(s):  
UMAR MUHAMMAD ABUBAKAR ◽  
Soraj Patel

Various extensions of classical gamma, beta, Gauss hypergeometric and confluent hypergeometric functions have been proposed recently by many researchers. In this paper, we further generalized extended beta function with some of its properties such as symmetric properties, summation formulas, integral representations, connection with some other special functions such as classical beta, error, Mittag – Leffler, incomplete gamma, hypergeometric, classical Wright, Fox – Wright, Fox H and Meijer G – functions. Furthermore, the generalized beta function is used to generalize classical and other extended Gauss hypergeometric, confluent hypergeometric, Appell’s and Lauricella’s functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdus Saboor ◽  
Gauhar Rahman ◽  
Hazrat Ali ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad

In this paper, a new confluent hypergeometric gamma function and an associated confluent hypergeometric Pochhammer symbol are introduced. We discuss some properties, for instance, their different integral representations, derivative formulas, and generating function relations. Different special cases are also considered.


2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.


2020 ◽  
Vol 4 (3) ◽  
pp. 33
Author(s):  
Yudhveer Singh ◽  
Vinod Gill ◽  
Jagdev Singh ◽  
Devendra Kumar ◽  
Kottakkaran Sooppy Nisar

In this article, we apply an integral transform-based technique to solve the fractional order Volterra-type integro-differential equation (FVIDE) involving the generalized Lorenzo-Hartely function and generalized Lauricella confluent hypergeometric function in terms of several complex variables in the kernel. We also investigate and introduce the Elazki transform of Hilfer-derivative, generalized Lorenzo-Hartely function and generalized Lauricella confluent hypergeometric function. In this article, we have established three results that are present in the form of lemmas, which give us new results on the above mentioned three functions, and by using these results we have derived our main results that are given in the form of theorems. Our main results are very general in nature, which gives us some new and known results as a particular case of results established here.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 996 ◽  
Author(s):  
Hari Mohan Srivastava ◽  
Asifa Tassaddiq ◽  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Ilyas Khan

In this article, we define an extended version of the Pochhammer symbol and then introduce the corresponding extension of the τ-Gauss hypergeometric function. The basic properties of the extended τ-Gauss hypergeometric function, including integral and derivative formulas involving the Mellin transform and the operators of fractional calculus, are derived. We also consider some new and known results as consequences of our proposed extension of the τ-Gauss hypergeometric function.


Sign in / Sign up

Export Citation Format

Share Document