Plant Type Selection for Reclamation of Sarcheshmeh Copper Mine Using Fuzzy-Topsis Approach / Wybór Gatunków Roślin Do Wykorzystania W Projekcie Rekultywacji Terenów Kopalni Miedzi Sarcheshmeh Z Wykorzystaniem Metod Logiki Rozmytej Topsis

2013 ◽  
Vol 58 (3) ◽  
pp. 953-968 ◽  
Author(s):  
Arash Ebrahimabadi ◽  
Iraj Alavi

Abstract Plant species selection is a multi-criteria evaluation decision and has a strategic importance for many companies. The conventional methods for plant species selection are inadequate for dealing with the imprecise or vague nature of linguistic assessment. To overcome this difficulty, fuzzy multi-criteria decision-making methods are proposed. The aim of this study is to use the fuzzy technique for order preference by similarity to ideal solution (F.TOPSIS) methods for the selection of plant species in mine reclamation plan. Plant type selection and planting to protect the environment and the reclamation of the mine are some of the most important solutions. Therefore, the objective of the current research study is to choose the proper plant types for reclamation of Sarcheshmeh Copper Mine using Fuzzy-topsis method. In this regard, primarily, surrounding area of Sarcheshmeh copper mine, one of the world’s 10 biggest copper mine which is located near Kerman city of Iran, are surveyed, to choose the best plant type for reclamation of disturbance area. With this respect, based on reclamation plan, primary criteria were consisted of kinds of post mining land use, climate, and nature of soil. Comparison matrixes were then obtained based on experts’ opinion and plant types were subsequently prioritized using the Fuzzy Topsis method. Secondary factors considered through the analysis were as follows: perspective of the region, resistance against disease and insects, strength and method of growth, availability to plant type, economic efficiency, protection of soil, storing water, and prevention of pollution. Finally, suitable plant types in the mining perimeter were prioritized as: Amygdalus scoparia, Tamarix, Pistachio Wild, Ephedra, Astragalus, Salsola, respectively.

2018 ◽  
Vol 15 (2) ◽  
pp. 141-152
Author(s):  
Arash Ebrahimabadi ◽  
Mahdi Pouresmaieli ◽  
Alireza Afradi ◽  
Esmaeil Pouresmaeili ◽  
Sahand Nouri

2016 ◽  
Vol 61 (4) ◽  
pp. 713-728
Author(s):  
Arash Ebrahimabadi

Abstract This paper describes an effective approach to select suitable plant species for reclamation of mined lands in Chadormaloo iron mine which is located in central part of Iran, near the city of Bafgh in Yazd province. After mine’s total reserves are excavated, the mine requires to be permanently closed and reclaimed. Mine reclamation and post-mining land-use are the main issues in the phase of mine closure. In general, among various scenarios for mine reclamation process, i.e. planting, agriculture, forestry, residency, tourist attraction, etc., planting is the oldest and commonly-used technology for the reclamation of lands damaged by mining activities. Planting and vegetation play a major role in restoring productivity, ecosystem stability and biological diversity to degraded areas, therefore the main goal of this research work is to choose proper and suitable plants compatible with the conditions of Chadormaloo mined area, providing consistent conditions for future use. To ensure the sustainability of the reclaimed landscape, the most suitable plant species adapted to the mine conditions are selected. Plant species selection is a Multi Criteria Decision Making (MCDM) problem. In this paper, a fuzzy MCDM technique, namely Fuzzy Analytic Hierarchy Process (FAHP) is developed to assist chadormaloo iron mine managers and designers in the process of plant type selection for reclamation of the mine under fuzzy environment where the vagueness and uncertainty are taken into account with linguistic variables parameterized by triangular fuzzy numbers. The results achieved from using FAHP approach demonstrate that the most proper plant species are ranked as Artemisia sieberi, Salsola yazdiana, Halophytes types, and Zygophyllum, respectively for reclamation of Chadormaloo iron mine.


2020 ◽  
Vol 28 (46) ◽  
pp. 103-128
Author(s):  
esmaeil gharanjik ◽  
mohamad ziaadini ◽  
mostsfa hadavi nezhad ◽  
◽  
◽  
...  

2021 ◽  
pp. 163-174
Author(s):  
Mehdi Ghazanfari ◽  
Morteza Hashempour

Due to the important environmental effects on human life and the conflict between the mining process and environmental factors, the enactment of protectionist environmental laws in the mineral industry has received extensive attention especially in countries with high mining potential. In this regard, using an extended fuzzy TOPSIS method, this study develops a novel conceptual framework to identify the key protection laws in Iran by considering the mineral successful laws and regulations in mineral-developed countries such as Australia, Chile, India, Turkey, Canada, South Africa, and China. This helps to apply the experiences of the abovementioned countries in resolving similar conflicts in Iran’s mineral industry. The key protection laws are selected based on their national and international environmental treaties, mines’ environmental protection laws, conflict solution methods, social responsibilities in mining activity, and laws for the abandoned mines. The proposed framework demonstrates that Iran’s mineral laws require revision and more transparency to avoid ambiguity and conflict with mineral property laws and governmental rights.


2020 ◽  
Vol 5 (1) ◽  
pp. 461-474 ◽  
Author(s):  
Naiyer Mohammadi Lanbaran ◽  
Ercan Celik ◽  
Muhammed Yiğider

AbstractThe purpose of this study is extended the TOPSIS method based on interval-valued fuzzy set in decision analysis. After the introduction of TOPSIS method by Hwang and Yoon in 1981, this method has been extensively used in decision-making, rankings also in optimal choice. Due to this fact that uncertainty in decision-making and linguistic variables has been caused to develop some new approaches based on fuzzy-logic theory. Indeed, it is difficult to achieve the numerical measures of the relative importance of attributes and the effects of alternatives on the attributes in some cases. In this paper to reduce the estimation error due to any uncertainty, a method has been developed based on interval-valued fuzzy set. In the suggested TOPSIS method, we use Shannon entropy for weighting the criteria and apply the Euclid distance to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s) can be selected in the decision-making process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Wang ◽  
Shuguang Jian ◽  
Hai Ren ◽  
Junhua Yan ◽  
Nan Liu

Plant functional traits are fundamental to the understanding of plant adaptations and distributions. Recently, scientists proposed a trait-based species selection theory to support the selection of suitable plant species to restore the degraded ecosystems, to prevent the invasive exotic species and to manage the sustainable ecosystems. Based on this theory, in a previous study, we developed a species screening model and successfully applied it to a project where plant species were selected for restoring a tropical coral island. However, during this process we learned that a software platform is necessary to automate the selection process because it can flexible to assist users. Here, we developed a generalized software platform called the “Restoration Plant Species Selection (RPSS) Platform.” This flexible software is designed to assist users in selecting plant species for particular purposes (e.g., restore the degraded ecosystems and others). It is written in R language and integrated with external R packages, including the packages that computing similarity indexes, providing graphic outputs, and offering web functions. The software has a web-based graphical user interface that allows users to execute required functions via checkboxes and buttons. The platform has cross-platform functionality, which means that it can run on all common operating systems (e.g., Windows, Linux, macOS, and others). We also illustrate a successful case study in which the software platform was used to select suitable plant species for restoration purpose. The objective of this paper is to introduce the newly developed software platform RPSS and to provide useful guidances on using it for various applications. At this step, we also realized that the software platform should be constantly updated (e.g., add new features) in the future. Based on the existing successful application and the possible updates, we believe that our RPSS software platform will have broader applications in the future.


Sign in / Sign up

Export Citation Format

Share Document