scholarly journals Comparative Investigation of Mechanical–Physical Characteristics of Biodegradable and Non-Degradable Yarns

2014 ◽  
Vol 14 (2) ◽  
pp. 61-72 ◽  
Author(s):  
Kira Krikštanavičienė ◽  
Sigitas Stanys ◽  
Vaida Jonaitienė

Abstract This article presents the results from investigations of tensile tests, absorbency test and degradation test of biodegradable and non- or partly biodegradable yarns produced from pure poly hydroxybutyrate-co-valerate (PHBV), poly (lactide acid) (PLA), isotactic polypropylene (iPP) polymers and their blends. The results indicate that mechanical-physical properties of PHBV are improved by adding PLA and iPP to PHBV. The main results indicate that the PHBV/PLA and PHBV/iPP (70/30) blends had better mechanical properties than pure PHBV, as well as improved immiscibility and the same or lower degradation in sodium chloride solution, respectively. The PHBV/PLA and PHBV/iPP blends showed a tendency for lower crystallinity and stiffness of the yarns, rendering them less stiff and fragile. The absorption tests showed that absorption dynamic process depends on the structure and raw materials of the yarns. The disinfectant in all samples is absorbed faster than blood. Research results showed that pure PHBV yarns have good hydrophobic properties, compared with pure PLA and iPP yarns. The use of additional PLA and iPP polymers changed the wetting behaviour of yarns. Absorption time of blended yarns in disinfectant liquid decreases and absorption time in the case of blood significantly increases in comparison with PLA and iPP yarns and decreases compared with PHBV yarns. The degradation tests (within 90 days in a solution of sodium chloride) showed that pure PHBV and PHBV/PLA blends degraded at different rates but with the loss of the same weight, while pure PHBV and PHBV/iPP blends degraded at the same rate, but PHBV/iPP blends had worse destruction results. Such improvements are expected to be important for the practical application of PHBV in some fields

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Vahid Pourzarghan ◽  
Bahman Fazeli-Nasab

AbstractThe most important inhibitors used in bronze disease are BTA and AMT. While these inhibitors control corrosion, they are toxic and cancerous. In this study, the acacia fruit extract (200 ppm to 1800 ppm) was used to the prevention of corrosion inhibition of bronze alloy in corrosive sodium chloride solution 0.5 M, for 4 weeks consecutively. The Bronze alloy used in this research, was made based on the same percentage as the ancient alloys (Cu-10Sn). IE% was used to obtain the inhibitory efficiency percentage and Rp can be calculated from the resistance of polarization. SEM–EDX was used to evaluate the surfaces of alloy as well as inhibitory. The experiment was conducted in split plot design in time based on the RCD in four replications. ANOVA was performed and comparison of means square using Duncan's multiple range test at one percent probability level. The highest rate of corrosion inhibition (93.5%) was obtained at a concentration of 1800 ppm with an increase in the concentration of the extract, corrosion inhibition also increased, i.e., more bronze was prevented from burning. Also, the highest corrosion inhibitory activity of Acacia extract (79.66) was in the second week and with increasing duration, this effect has decreased. EDX analysis of the control sample matrix showed that the amount of chlorine was 8.47%wt, while in the presence of corrosive sodium chloride solution, after 4 weeks, the amount of chlorine detected was 3.20%wt. According to the morphology (needle and rhombus) of these corrosion products based on the SEM images, it can be said, they are the type of atacamite and paratacamite. They have caused bronze disease in historical bronze works. The green inhibitor of Acacia fruit aqueous extract can play an effective role in inhibiting corrosion of bronze, but at higher concentrations, it became fungal, which can reduce the role of Acacia fruit aqueous extract and even ineffective. To get better performance of green inhibitors, more tests need to be done to improve and optimize.


1960 ◽  
Vol 38 (9) ◽  
pp. 1488-1494 ◽  
Author(s):  
E. J. Bounsall ◽  
W. A. E. McBryde

An analytical method is described for the determination of microgram amounts of silver in galena ores, based on the "reversion" of silver dithizonate. Silver is separated from relatively large amounts of lead by extraction as dithizonate into chloroform from an aqueous 1:99 nitric acid solution. Separation from mercury, which is also extracted under these conditions and would, if present, interfere in the analysis, is achieved by reverting the dithizonate solution with a 5% aqueous sodium chloride solution which is also 0.015 molar in hydrochloric acid. Following dilution of this aqueous solution and adjustment of pH, silver is again extracted into chloroform as the dithizonate, and determined absorptiometrically. Analyses of a number of galena ore samples showed a precision of within 3% for a silver content ranging from 0.03 to 0.4%.Some other methods for isolating silver from these samples, which were tried but found unsatisfactory, are discussed.


Sign in / Sign up

Export Citation Format

Share Document