scholarly journals Methodology of Optimum Selection of Material and Semi-Folded Products for Rotors of Open-End Spinning Machine

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stanisław Płonka ◽  
Jacek Postrożny ◽  
Robert Drobina

AbstractThe article presents the methodology of optimal selection of material and the form of semi-product for the rotors of the spindle-less spinning machine. The multicriteria approach was utilized taking into account versatile criteria. The applied procedure consists of two stages: the optimum method in the Pareto sense and the method of distance function. Based on the analysis of the spinning head work, rotor and availability function, six different materials and three forms of semifinished products (extruded bar, forged element, and cast element) were considered. In consequence, the admissible set consisting of nine elements was obtained. For the evaluation of technological quality of the rotor, the following criteria were proposed: index of functionality of the material σf/ρ, maximum height of the surface peaks, Sp, and maximal hardness on surface of oxide layer μHV0,1. Finally, taking into account the economical criterion (unit cost), the Pareto-optimal set of solutions was determined based on four criteria. Due to the fact that this set contained five variants, the distance function was utilized for choosing the best final variant. The optimal material and the semi-product (because of the assumed criteria) chosen were as follows: alloy AlSi1MgMn and the forged element—because in this case the value of distance function was minimal.

2014 ◽  
Vol 1016 ◽  
pp. 39-43
Author(s):  
Simon Barrans ◽  
H.E. Radhi

Multi-criteria optimization problems are known to give rise to a set of Pareto optimal solutions where one solution cannot be regarded as being superior to another. It is often stated that the selection of a particular solution from this set should be based on additional criteria. In this paper a methodology has been proposed that allows a robust design to be selected from the Pareto optimal set. This methodology has been used to determine a robust geometry for a welded joint. It has been shown that the robust geometry is dependent on the variability of the geometric parameters.


2007 ◽  
Vol 15 (1) ◽  
pp. 61-93 ◽  
Author(s):  
Edwin D. de Jong

Coevolution has already produced promising results, but its dynamic evaluation can lead to a variety of problems that preventmost algorithms from progressing monotonically. An important open question therefore is how progress towards a chosen solution concept can be achieved. A general solution concept for coevolution is obtained by viewing opponents or tests as objectives. In this setup known as Pareto-coevolution, the desired solution is the Pareto-optimal set. We present an archive that guarantees monotonicity for this solution concept. The algorithm is called the Incremental Pareto-Coevolution Archive (IPCA), and is based on Evolutionary Multi-Objective Optimization (EMOO). By virtue of its monotonicity, IPCA avoids regress even when combined with a highly explorative generator. This capacity is demonstrated on a challenging test problem requiring both exploration and reliability. IPCA maintains a highly specific selection of tests, but the size of the test archive nonetheless grows unboundedly. We therefore furthermore investigate how archive sizes may be limited while still providing approximate reliability. The LAyered Pareto-Coevolution Archive (LAPCA) maintains a limited number of layers of candidate solutions and tests, and thereby permits a trade-off between archive size and reliability. The algorithm is compared in experiments, and found to be more efficient than IPCA. The work demonstrates how the approximation of amonotonic algorithm can lead to algorithms that are sufficiently reliable in practice while offering better efficiency.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Alex Iglesias ◽  
Zoltan Dombovari ◽  
German Gonzalez ◽  
Jokin Munoa ◽  
Gabor Stepan

Cutting capacity can be seriously limited in heavy duty face milling processes due to self-excited structural vibrations. Special geometry tools and, specifically, variable pitch milling tools have been extensively used in aeronautic applications with the purpose of removing these detrimental chatter vibrations, where high frequency chatter related to slender tools or thin walls limits productivity. However, the application of this technique in heavy duty face milling operations has not been thoroughly explored. In this paper, a method for the definition of the optimum angles between inserts is presented, based on the optimum pitch angle and the stabilizability diagrams. These diagrams are obtained through the brute force (BF) iterative method, which basically consists of an iterative maximization of the stability by using the semidiscretization method. From the observed results, hints for the selection of the optimum pitch pattern and the optimum values of the angles between inserts are presented. A practical application is implemented and the cutting performance when using an optimized variable pitch tool is assessed. It is concluded that with an optimum selection of the pitch, the material removal rate can be improved up to three times. Finally, the existence of two more different stability lobe families related to the saddle-node and flip type stability losses is demonstrated.


1997 ◽  
Vol 29 (12) ◽  
pp. 869-877 ◽  
Author(s):  
Dharmaraj Veeramani ◽  
Yuh-Shying Gau

2012 ◽  
Vol 217-219 ◽  
pp. 1497-1500 ◽  
Author(s):  
Xiao Jun Zuo ◽  
Jun Chu Li ◽  
Da Hai Liu ◽  
Long Fei Zeng

Constructing accurate constitutive equation from the optimal material constants is the basis for finite element numerical simulation. To accurately describe the creep ageing behavior of 2A12 aluminum alloy, the present work is tentatively to construct an elastic-plastic constitutive model for simulation based on the ANSYS environment. A time hardening model including two stages of primary and steady-state is physically derived firstly, and then determined by electronic creep tensile tests. The material constants within the creep constitutive equations are obtained. Furthermore, to verify the feasibility of the material model, the ANSYS based numerical scheme is established to simulate the creep tensile process by using the proposed material model. Results show that the creep constitutive equation can better describe the deformation characteristics of materials, and the numerical simulations and experimental test points are in good agreement.


1994 ◽  
Vol 80 (3-4) ◽  
pp. 213-234 ◽  
Author(s):  
Sankar K. Pal ◽  
Dinabandhu Bhandari

Sign in / Sign up

Export Citation Format

Share Document