scholarly journals Mobility of Potentially Toxic Elements from the Abandoned Uranium Mine’s Spoil Bank

2021 ◽  
Vol 28 (2) ◽  
pp. 241-258
Author(s):  
Lamlile Khumalo ◽  
György Heltai ◽  
András Várhegyi ◽  
Márk Horváth

Abstract This study is part of the ongoing environmental monitoring program of the abandoned Mecsek uranium mine during the remediation period. During this program on the recultivated No.1 spoil bank, the radioactivity and the potentially toxic element (PTE) contents in the covering soil had shown some anomalies which refers to possible migration alongside the slope. Therefore, in a previous study, soil and plant samples were collected from top to bottom position of the slope and the total element content was determined by multi-elemental inductively coupled plasma-optical emission spectrometry. The results have indicated that there was a high possibility for PTEs to be mobile and available for uptake by plants. To confirm this indication in the present study for the soil samples the BCR sequential extraction procedure was applied to characterise the environmental mobility of PTEs, and it was compared with soil pH and cation exchange capacity (CEC). The results indicated that the ratio of Cd, Co, Mn, Pb, and U in the non-residual fractions ranged between 36.8 to 100 % and increased from top to bottom direction. The comparison showed that the samples with the lowest pH and CEC had the most mobility of the PTEs. The distribution of U, Cd, Mn, Co, and Pb in fractions indicated that some parts of the spoil deposit require additional steps to hinder the migration through the covering soil layer, and the BCR sequential extraction procedure has proven to be useful in providing information for the planning and management of remediation operations.

2021 ◽  
Vol 193 (9) ◽  
Author(s):  
Janin Scheplitz ◽  
Sarah Koopmann ◽  
Henning Fröllje ◽  
Thomas Pichler

AbstractSequential extraction analyses are widely used for the determination of element speciation in sediments and soils. Typical sequential extraction protocols were developed to extract from low-carbonate samples and therefore are not necessarily suitable for high-carbonate samples. In this study, we tested increased reagent to sample ratios to adjust an existing sequential extraction procedure to analyze high-CaCO3 samples with concentrations ranging from 70 to above 90 %. Complete dissolution of the CaCO3 phase, and a higher extraction efficiency of manganese associated with the carbonate phase, was achieved when using four times the original reagent to sample ratio in the 2nd extraction step. This increase of reagent did not compromise the extraction of subsequent phases as shown by unaffected Fe concentrations in a low-carbonate sample. Hence, an essential outcome was that increasing the solution to sample ratio did not lead to the dissolution of other sedimentary phases, such as hydrous and crystalline iron oxides or sulfides. Thus, compared to other extraction protocols that use a lower reagent to sample ratio in the carbonate dissolution step, the new protocol allowed the complete extraction of oxide and sulfide phases in the following extraction steps. Furthermore, the study demonstrated the benefit of replacing Na-acetate with NH4-acetate to extract exchangeable ions and carbonates. We observed increased intensities for several analytes, i.e., trace metals such as Mo and As, due to less suppression of the analyte signal by NH4-acetate than by Na-acetate during analysis by inductively coupled plasma optical emission spectrometry (ICP-OES).


2013 ◽  
Vol 96 (4) ◽  
pp. 864-869 ◽  
Author(s):  
Huseyin Altundag ◽  
Mustafa Imamoglu ◽  
Secil Doganci ◽  
Erkan Baysal ◽  
Sinem Albayrak ◽  
...  

Abstract Sequential selective extraction techniques are commonly used to fractionate the solid-phase forms of metals in soils. This procedure provides measurements of extractable metals from media, such as acetic acid (0.11 M), hydroxyl ammonium chloride (0.1 M), hydrogen peroxide (8.8 M) plus ammonium acetate (1 M), and aqua regia stages of the sequential extraction procedure. In this work, the extractable Pb, Cu, Mn, Sr, Ni, V, Fe, Zn, and Cr were evaluated in street dust samples from Sakarya, Turkey, between May and October 2009 using the three-step sequential extraction procedure described by the Community Bureau of Reference (BCR, now the Standards, Measurements, and Testing Programme) of the European Union. The sampling sites were divided into 10 categories; a total of 50 street dusts were analyzed. The determination of multielements in the samples was performed by inductively coupled plasma-optical emission spectrometry. Validation of the proposed method was performed using BCR 701 certified reference material. The results showed good agreement between the obtained and the certified values for the metals analyzed.


2015 ◽  
Vol 43 (1) ◽  
pp. 7-14 ◽  
Author(s):  
György Heltai ◽  
Ilona Fekete ◽  
Gábor Halász ◽  
Katalin Kovács ◽  
Márk Horváth ◽  
...  

Abstract For the characterisation of the environmental mobility of heavy metal contamination in aquatic sediments, the EU Bureau of Reference has proposed a fractionation by sequential extraction procedure. For its validation, the CRM-701 sample is available containing Cd, Cr, Cu, Ni, Pb, and Zn. In this paper, the matrix-matched calibration problems are presented. A multi-elemental inductively coupled plasma-optical emission technique is employed for the detection of heavy metals in the extracts. It was established that the sensitivities are strongly influenced by the extractants, which causes significant matrix effects: the sensitivities are strongly influenced by the solvents applied in extraction steps; the summarised recoveries show an acceptable agreement with the certified values; however, in the individual extraction steps for certain elements significant differences may occur due to the neglected interferences. Therefore, further optimisation is required utilising the flexible line selection possibility offered by the HORIBA Jobin Yvon ACTIVA-M instrument.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1077
Author(s):  
Martin Šebesta ◽  
Martin Urík ◽  
Marek Kolenčík ◽  
Marek Bujdoš ◽  
Peter Matúš

The evaluation of nanoparticle bioavailability or the bioavailability of dissolved elements by direct measurement through plant uptake is a strenuous process. Several multi-step sequential extraction procedures, including the BCR sequential extraction procedure, have been created to provide potential accessibility of elements, where real soil-plant transfer can be problematic to implement. However, these have limitations of their own based on the used extractants. For the purposes of our research, we enriched two soils: an untilted forest soil with naturally acidic pH and a tilted agricultural soil with alkaline pH by three Zn forms—ionic Zn in the form of ZnSO4, ZnO nanoparticles (ZnO NP) and larger particles of ZnO (ZnO B)—by batch sorption. We then extracted the retained Zn in the soils by BCR sequential extraction procedure to extract three fractions: ion exchangeable, reducible, and oxidizable. The results were compared among the soils and a comparison between the different forms was made. Regardless of the difference in soil pH and other soil properties, ZnO NP, ZnO B, and ionic Zn showed little to no difference in the relative distribution between the observed soil fractions in both forest soil and agricultural soil. Since ionic Zn is more available for plant uptake, BCR sequential extraction procedure may overestimate the easily available Zn when amendment with ionic Zn is compared to particulate Zn. The absence of a first extraction step with mild extractant, such as deionized water, oversimplifies the processes the particulate Zn undergoes in soils.


2010 ◽  
Vol 12 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Junhui Li ◽  
Ying Lu ◽  
Hojae Shim ◽  
Xianglian Deng ◽  
Jin Lian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document