scholarly journals Activity of Trunk and Lower Extremity Musculature: Comparison Between Parallel Back Squats and Belt Squats

2020 ◽  
Vol 72 (1) ◽  
pp. 223-228
Author(s):  
Lori Joseph ◽  
Josh Reilly ◽  
Kristine Sweezey ◽  
Robyn Waugh ◽  
Lara A. Carlson ◽  
...  

AbstractThe back squat is widely used in strength training programs. Alternatively, the belt squat has been gaining popularity since it loads the weight on the hips, as opposed to the shoulders and spine. The purpose of this study was to determine whether using a belt squat would result in less lumbar extensor activation while providing similar excitation of other prime mover and stabilizer musculature. Ten participants (9 males, 1 female; age 29.3 ± 4.9 years; body mass 96.2 ± 17.8 kg) who regularly trained both belt squats and back squats performed three sets of 5 repetitions with 100% bodyweight for each exercise. Peak and integrated muscle activity was calculated and normalized to a maximum voluntary isometric contraction. A one-way ANOVA (p < 0.05) was used to compare conditions. Belt squatting decreased lumbar erector impulse (45.4%) and peak (52.0%) activation as compared to the back squat. Belt squatting did not alter activation of the lower extremities except for a decrease in the gluteus maximus (35.2% impulse and 32.1% peak), gluteus medius (54.1% impulse and 55.2% peak). Furthermore, belt squatting reduced activation of the rectus abdominus (44.3% impulse; 31.1% peak), and external obliques (45.8% impulse; 53.7% peak) as compared to back squatting. Our results suggest belt squatting provides similar muscular demands for the quadriceps, hamstrings, and plantar flexors, but is less demanding of trunk stabilizers, and gluteual muscles. Belt squats may be a suitable alternative to back squats in order to avoid stressing low back or trunk musculature.

2021 ◽  
Vol 3 ◽  
Author(s):  
Stian Larsen ◽  
Eirik Kristiansen ◽  
Eric Helms ◽  
Roland van den Tillaar

Barbell placement and stance width both affect lifting performance in the back squat around the sticking region. However, little is known about how these squat conditions separately could affect the lifting performance. Therefore, this study investigated the effects of stance width and barbell placement upon kinematics, kinetics, and myoelectric activity around the sticking region during a three-repetition maximum back squat. Nine men and nine women (body mass: 76.2 ±11.1, age: 24.9 ± 2.6) performed back squats with four different techniques, such as: high-bar narrow stance (HBNS), high-bar wide stance, low-bar narrow stance, and low-bar wide stance where they lifted 99.2 ± 23.6, 92.9 ± 23.6, 102.5 ± 24.7, and 97.1 ± 25.6 kg, respectively. The main findings were that squatting with a low-bar wide stance condition resulted in larger hip contributions to the total moment than the other squat conditions, whereas squatting with an HBNS resulted in greater knee contributions to the total moment together with higher vastus lateralis and less gluteus maximus myoelectric activity. Our findings suggest that training with an HBNS could be beneficial when targeting the knee extensors and plantar flexors, whereas a low-bar wide stance could be beneficial when targeting the hip extensors.


Author(s):  
Wei-Han Chen ◽  
Wen-Wen Yang ◽  
Ya-Chen Liu ◽  
Wen-Hsuan Pan ◽  
Chiang Liu

Hula hoops are a popular piece of fitness equipment used to attempt to slim the waistline and improve core muscle endurance. Although there are obvious visible movements at the waist and hip, no study has quantified the intensity of muscle activity during hula hooping. Therefore, this study analyzed muscle activation in the torso and hip during hula hooping. Because injury to the waist often occurs after prolonged, repeated impact between the waist and a hula hoop, this study developed a novel waist fitness hoop that eliminates impact, called the “Mini Hoop,” and determined the effects of mini hooping on hip movement and muscle activation. A total of 16 healthy females performed hula hooping and mini hooping at a self-selected pace. Results showed that hula hooping caused larger muscle activation, with 46%–49% maximum voluntary isometric contraction for the external oblique, spinal erectors, and gluteus medius, whereas gluteus maximus and adductor longus muscle activation were with 22%–29% maximum voluntary isometric contraction. Mini hooping required a smaller range of hip motion in flexion, extension, abduction/adduction, higher pelvic oscillation frequency, and lower muscle activation for the external oblique, spinal erectors, gluteus medius, gluteus maximus, and adductor longus (13%–33% maximum voluntary isometric contraction) compared with hula hooping ( p < 0.05). In conclusion, hula hooping and mini hooping differ in their range of hip motion, pelvic oscillation frequency, and muscle activation requirements. Hula hooping is suitable for moderate-intensity core muscle activation, whereas the Mini Hoop is suitable for low-level core muscle activation.


Author(s):  
Seung-Min Baik ◽  
Heon-Seock Cynn ◽  
Chung-Hwi Yi ◽  
Ji-Hyun Lee ◽  
Jung-Hoon Choi ◽  
...  

BACKGROUND: The effectiveness of side-sling plank (SSP) exercises on trunk and hip muscle activation in subjects with gluteus medius (Gmed) weakness is unclear. OBJECTIVE: To quantify muscle activation of the rectus abdominis (RA), external oblique (EO), erector spinae (ES), lumbar multifidus (LM), Gmed, gluteus maximus (Gmax), and tensor fasciae latae (TFL) during SSP with three different hip rotations compared to side-lying hip abduction (SHA) exercise in subjects with Gmed weakness. METHODS: Twenty-two subjects with Gmed weakness were recruited. SHA and three types of SSP exercises were performed: SSP with neutral hip (SSP-N), hip lateral rotation (SSP-L), and hip medial rotation (SSP-M). Surface electromyography was used to measure the activation of the trunk and hip muscles. RESULTS: The trunk and hip muscles activations were generally significantly higher level during three SSP than SHA. SSP-M showed significantly lower EO activation while significantly higher ES and LM activation than SSP-L. Gmed activation was significantly higher during SSP-M than during SSP-L. TFL activation was significantly lower during SSP-M than during SSP-N and SSP-L. CONCLUSIONS: SSP could be prescribed for patients who have reduced Gmed strength after injuries. Especially, SSP-M could be applied for patients who have Gmed weakness with dominant TFL.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Nicole G. Harper ◽  
Jason M. Wilken ◽  
Richard R. Neptune

Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling, muscles can perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional (3D) muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion, mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control, while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee, and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.


2015 ◽  
Vol 25 (4) ◽  
pp. 1258-1265 ◽  
Author(s):  
Nicholas A. Cooper ◽  
Kelsey M. Scavo ◽  
Kyle J. Strickland ◽  
Natti Tipayamongkol ◽  
Jeffrey D. Nicholson ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 153-160
Author(s):  
Catiane Souza ◽  
Edgar Santiago Wagner Neto ◽  
Fabiane De Oliveira Brauner ◽  
Debora Cantergi ◽  
Willian Dhein ◽  
...  

Introdução: A correta ativação da musculatura estabilizadora do tronco é essencial em diversas situações, inclusive prevenção e tratamento de lombalgias. A ativação adequada desses músculos é um princípio do Método Pilates, porém nem todos os efeitos das variações dos exercícios estão descritos da literatura. Objetivo: comparar a atividade elétrica de músculos do power house (reto abdominal, oblíquo externo, oblíquo interno/transverso abdominal e multífido) durante a execução do exercício Leg Circles no aparelho Cadillac com mola alta e com mola baixa. Métodos: Foram selecionadas 10 instrutoras de Pilates, 30 anos (±5), 58 Kg (±7), estatura 163 cm (±7) que foram submetidas a testes de contrações isométricas voluntárias máximas, e logo após, à realização do Leg Circles no Cadillac com a mola alta e baixa. Foi coletada a atividade elétrica dos músculos reto abdominal, oblíquo interno/transverso abdominal, oblíquo externo e multífido. Resultados: A ativação do oblíquo interno foi maior na mola alta (p=0,002), assim como a ativação do multífido (p=0,042). Já o oblíquo externo foi mais ativado na mola baixa (p=0,001). O reto abdominal não variou sua ativação (p=0,375). Conclusão: A mola alta pode ser acatada como a posição mais adequada para ativar a musculatura profunda do tronco, visto que nesta situação houve maior ativação do multífido e do oblíquo interno/transverso abdominal, somados à menor ativação do oblíquo externo e a baixa ativação no reto abdominal encontrados na situação com mola alta. ABSTRACT. Leg circles on Cadillac: effect of different spring positions on the activation of stabilizers in the trunk. Background: The correct activation of the trunk stabilizing muscles is essential in several situations, including prevention and treatment of low back pain. Proper activation of these muscles is a principle of the Pilates Method, but not all the effects of exercise variations are described in the literature. Objective: compare the electric activity of power house muscles (rectus abdominis, external oblique, internal oblique/transverse abdominal and multifidus) during the execution of the Leg Circles exercise with high spring and low spring in Cadillac apparatus. Methods: Ten Pilates instructors were selected, with 30 years (±5), 58 kg (±7), 163 cm (±7) who underwent maximum voluntary isometric contraction tests before the execution of the Leg Circles on the Cadillac, with high and low spring. The electrical activity of the rectus abdominis, internal oblique/transverso abdominal, external oblique and multifidus muscles was collected. Results: The internal oblique (p=0,002) and the multifidus (p=0,042) activations were greater on the high spring. However, the external oblique showed a higher activation on the lower spring (p = 0.001). The abdominal rectus did not change its activation = 0.375). Conclusion: The high spring can be considered as the most suitable position to ac-tivate the deep musculature of the trunk, since the greater activation of the multifidus and of the internal oblique/transverse abdominal, together with the lower activation of the external oblique and the low acti-vation in the rectus abdominus found in the high spring situation.


2019 ◽  
Vol 28 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Kunal Bhanot ◽  
Navpreet Kaur ◽  
Lori Thein Brody ◽  
Jennifer Bridges ◽  
David C. Berry ◽  
...  

Context:Dynamic balance is a measure of core stability. Deficits in the dynamic balance have been related to injuries in the athletic populations. The Star Excursion Balance Test (SEBT) is suggested to measure and improve dynamic balance when used as a rehabilitative tool.Objective:To determine the electromyographic activity of the hip and the trunk muscles during the SEBT.Design:Descriptive.Setting:University campus.Participants:Twenty-two healthy adults (11 males and 11 females; 23.3 [3.8] y, 170.3 [7.6] cm, 67.8 [10.3] kg, and 15.1% [5.0%] body fat).Intervention:Surface electromyographic data were collected on 22 healthy adults of the erector spinae, external oblique, and rectus abdominis bilaterally, and gluteus medius and gluteus maximus muscle of the stance leg. A 2-way repeated measures analysis of variance was used to determine the interaction between the percentage maximal voluntary isometric contraction (%MVIC) and the reach directions. The %MVIC for each muscle was compared across the 8 reach directions using the Sidak post hoc test withαat .05.Main Outcome Measures:%MVIC.Results:Significant differences were observed for all the 8 muscles. Highest electromyographic activity was found for the tested muscles in the following reach directions—ipsilateral external oblique (44.5% [38.4%]): anterolateral; contralateral external oblique (52.3% [40.8%]): medial; ipsilateral rectus abdominis (8% [6.6%]): anterior; contralateral rectus abdominis (8% [5.3%]): anteromedial; ipsilateral erector spinae (46.4% [20.2%]): posterolateral; contralateral erector spinae (33.5% [11.3%]): posteromedial; gluteus maximus (27.4% [11.7%]): posterior; and gluteus medius (54.6% [26.1%]): medial direction.Conclusions:Trunk and hip muscle activation was direction dependent during the SEBT. This information can be used during rehabilitation of the hip and the trunk muscles.


2018 ◽  
Vol 29 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Doruk Akgün ◽  
Philipp von Roth ◽  
Tobias Winkler ◽  
Carsten Perka ◽  
Adam Trepczynski ◽  
...  

Introduction: The aim of this study was to analyse the relationship between bony joint orientation and the distribution of hip musculature. Methods: The bone anatomy of the hip (femoral antetorsion (AT), acetabular anteversion (AV), and combined anteversion (AV/AT)) and the muscle volume of the gluteal muscles and the tensor fasciae latae were analysed bilaterally using computed tomography data of 49 patients. Muscle force direction (MFD) was determined for each muscle. The total MFD of the hip musculature was calculated and then correlated with the bony anatomy. Results: The mean AV, AT, and AV/AT were 21.9° ± 5.9°, 7.22° ± 7.4°, and 29.2° ± 9°, respectively. We found the following mean muscle volumes: gluteus maximus: 780 ± 227 cm3, gluteus medius: 322 ± 82 cm3, gluteus minimus: 85 ± 20 cm3, and tensor fasciae latae: 68 ± 22 cm3. The mean MFD was 18.92° ± 1.29°. We found a uniform distribution of the musculature that was not correlated with the bone anatomy. Conclusion: This study highlights the variability in native acetabular and femoral anatomy and that bone hip anatomy does not correlate with the distribution of hip musculature. Although native acetabular anteversion matches the suggested targets for cup insertion, native combined anteversion is not related to current implant insertion targets. Understanding native muscular anatomy and the alterations that occur with different surgical approaches can serve as an explanatory model for THAs that has become unstable despite the components being implanted within the safe zone.


Author(s):  
Masrum Syam ◽  
I Made Muliarta ◽  
Muhammad Irfan ◽  
Nyoman Adiputra ◽  
Wayan Weta ◽  
...  

Hamstring adalah salah satu otot yang paling sering mengalami pemendekan dan kerap kali menjadi pemicu terjadinya keluhan lain pada tubuh seperti low back pain, plantar facitis, knee pain dan sebagainya hingga perlu dilakukan pemanjangan otot hamstring guna mengurangi resiko timbulnya keluhan di regio lain. Penelitian ini adalah bentuk penelitian eksperimental yang akan menguji efektivitas dari besaran kontraksi 25%, 50%, dan 75% pada teknik contract relax untuk meningkatkan fleksibilitas kelompok otot hamstring. pada penelitian ini sampel akan dibagi menjadi 3 kelompok, kelompok pertama diberikan teknik contract relax dengan besaran kontraksi 25% untuk meningkatkan fleksibilitas otot hamstring, kelompok kedua diberikan teknik contract relax dengan besaran kontraksi 50% untuk meningkatkan fleksibilitas otot hamstring, dan kelompok ketiga diberikan teknik contract relax dengan besaran kontraksi 75% untuk meningkatkan fleksibilitas otot hamstring. Penelitian ini mengukur nilai fleksibilitas hamstring pada sebelum intervensi dan setelah intervensi sehingga sampel hanya akan mendapatkan 1 sesi intervensi. Sampel diukur fleksibilitas hamstringnya menggunakan sit and reach test pada sebelum intervensi kemudian dilakukan intervensi sesuai dengan pengelompokan yang telah dibagi kemudian setelah selesai dilakukan intervensi, sampel melakukan pengukuran kembali untuk mendapatkan nilai hasil intervensi. Hasil uji hipotesis Grup I (25%) menunjukkan nilai rerata pada sebelum intervensi 9,74(±3,38) dan nilai rerata pada setelah intervensi 16,00(±3,05), pada uji hipotesis Grup II (50%) menunjukkan nilai rerata pada sebelum intervensi 10,05(±2,68) dan nilai rerata setelah intervensi 16,42(±3,23), dan pada hasil uji hipotesis Grup III (75%) menunjukkan nilai rerata sebelum intervensi 9,66(±2,72) dan nilai rerata setelah intervensi 15,16(±2,95), dengan nilai probailitas pada ketiga Grup adalah 0,000 yang artinya (p<0,05) dan dinyatakan ada perbedaan yang signifikan dari ke tiga intervensi tersebut. Pada uji hipotesis IV dilakukan perbandingan hasil pada grup I, II, dan III, dengan menggunakan one way anova dengan hasil rerata Grup I 16,00(±3,05), Grup II 16,42(±3,23), dan Grup III 15,16(±2,95) dengan nilai probabilitas (p=0,442) yang artinya (p>0,05) dan dapat dinyatakan secara analisis statistik tidak ada perbedaan yang signifikan antara ke tiga intervensi yang dilakukan.Kata kunci: PNF, Contract-relax, hamstring, fleksibilitas, S-EMG


Sign in / Sign up

Export Citation Format

Share Document