scholarly journals Slow Extensional Flow Past a Non-Homogeneous Porous Spherical Shell

2013 ◽  
Vol 18 (2) ◽  
pp. 491-502 ◽  
Author(s):  
S.C. Rajvanshi ◽  
S. Wasu

An analytical investigation of extensional flow past a porous spherical shell of finite thickness with velocity slip at the surface is presented. The permeability of the shell varies continuously as a function of the radial distance. The flow in the porous region is assumed to obey Darcy’s Law. The drag has been calculated in terms of normal volume flux rate per unit area of the outer and inner surfaces. Particular cases of flow past a homogeneous sphere and no-slip boundary condition have been deduced.

Author(s):  
Mingtian Xu

In a Knudsen layer with thickness comparable to the mean free path, collisions between heat carriers and solid walls play an important role in nanoscale heat transports. An interesting question is that whether these collisions also induce the slip of heat flow similar to the velocity slip condition of the rarefied gases on solid walls. In this work based on the discrete Boltzmann transport equation, the slip boundary condition of heat flux on solid walls in the Knudsen layer is established. This result is exemplified by the slip boundary condition of heat flux in nanowires, which has been proposed in a phenomenological way.


Author(s):  
Susheela Chaudhary ◽  
Kiran Kunwar Chouhan ◽  
Santosh Chaudhary

Present study numerically investigates a two dimensional steady laminar boundary layer nanofluid flow of single-wall carbon nanotubes (SWCNTs) immersed into kerosene oil, due to a linearly stretched sheet. Flow is subjected to the slip boundary condition and suction/injection effects. Employing suitable similarity transformations, governing PDEs of the arising problem are converted into coupled nonlinear non-dimensional ordinary differential equations. A set of obtained ODEs with assisting boundary conditions is solved numerically by applying finite element method (FEM). Effect of pertinent factors, velocity slip parameter, suction/injection parameter and solid volume fraction parameter on non-dimensional velocity and temperature profiles are characterized graphically. In addition, physical emerging parameters, local Nusselt’s number and local skin friction coefficient are computed and presented via table. Furthermore, derived numerical values of shear stress and heat flux at the surface are compared with previously published results.


2011 ◽  
Vol 88-89 ◽  
pp. 628-631
Author(s):  
Zhi Jun Xi ◽  
Gang Li

The exist shear-free air-water interface at the fluid-solid houndary is one important reason for drag reduction of ultrahydrophobic surface. Rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number is investigated through computational fluid dynamics simulations(CFD). The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 μm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity.


Author(s):  
I. P. Jones

AbstractThis paper is concerned with the flow of viscous fluids around and through porous bodies. Previous boundary conditions that have been used are discussed and a generalization of a boundary condition adopted by Beavers and Joseph, for plane boundaries, is proposed for curved surfaces. Using this condition the problem of slow viscous flow past a spherical shell is solved and several special limiting cases are considered.


Sign in / Sign up

Export Citation Format

Share Document