Simulation of Liquid Flowing over Surfaces with Micro-Structure

2011 ◽  
Vol 88-89 ◽  
pp. 628-631
Author(s):  
Zhi Jun Xi ◽  
Gang Li

The exist shear-free air-water interface at the fluid-solid houndary is one important reason for drag reduction of ultrahydrophobic surface. Rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number is investigated through computational fluid dynamics simulations(CFD). The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 μm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Author(s):  
Derek C. Tretheway ◽  
Luoding Zhu ◽  
Linda Petzold ◽  
Carl D. Meinhart

This work examines the slip boundary condition by Lattice Boltzmann simulations, addresses the validity of the Navier’s hypothesis that the slip velocity is proportional to the shear rate and compares the Lattice Boltzmann simulations to the experimental results of Tretheway and Meinhart (Phys. of Fluids, 14, L9–L12). The numerical simulation models the boundary condition as the probability, P, of a particle to bounce-back relative to the probability of specular reflection, 1−P. For channel flow, the numerically calculated velocity profiles are consistent with the experimental profiles for both the no-slip and slip cases. No-slip is obtained for a probability of 100% bounce-back, while a probability of 0.03 is required to generate a slip length and slip velocity consistent with the experimental results of Tretheway and Meinhart for a hydrophobic surface. The simulations indicate that for microchannel flow the slip length is nearly constant along the channel walls, while the slip velocity varies with wall position as a results of variations in shear rate. Thus, the resulting velocity profile in a channel flow is more complex than a simple combination of the no-slip solution and slip velocity as is the case for flow between two infinite parallel plates.


Author(s):  
Mingtian Xu

In a Knudsen layer with thickness comparable to the mean free path, collisions between heat carriers and solid walls play an important role in nanoscale heat transports. An interesting question is that whether these collisions also induce the slip of heat flow similar to the velocity slip condition of the rarefied gases on solid walls. In this work based on the discrete Boltzmann transport equation, the slip boundary condition of heat flux on solid walls in the Knudsen layer is established. This result is exemplified by the slip boundary condition of heat flux in nanowires, which has been proposed in a phenomenological way.


Author(s):  
Susheela Chaudhary ◽  
Kiran Kunwar Chouhan ◽  
Santosh Chaudhary

Present study numerically investigates a two dimensional steady laminar boundary layer nanofluid flow of single-wall carbon nanotubes (SWCNTs) immersed into kerosene oil, due to a linearly stretched sheet. Flow is subjected to the slip boundary condition and suction/injection effects. Employing suitable similarity transformations, governing PDEs of the arising problem are converted into coupled nonlinear non-dimensional ordinary differential equations. A set of obtained ODEs with assisting boundary conditions is solved numerically by applying finite element method (FEM). Effect of pertinent factors, velocity slip parameter, suction/injection parameter and solid volume fraction parameter on non-dimensional velocity and temperature profiles are characterized graphically. In addition, physical emerging parameters, local Nusselt’s number and local skin friction coefficient are computed and presented via table. Furthermore, derived numerical values of shear stress and heat flux at the surface are compared with previously published results.


2013 ◽  
Vol 18 (2) ◽  
pp. 491-502 ◽  
Author(s):  
S.C. Rajvanshi ◽  
S. Wasu

An analytical investigation of extensional flow past a porous spherical shell of finite thickness with velocity slip at the surface is presented. The permeability of the shell varies continuously as a function of the radial distance. The flow in the porous region is assumed to obey Darcy’s Law. The drag has been calculated in terms of normal volume flux rate per unit area of the outer and inner surfaces. Particular cases of flow past a homogeneous sphere and no-slip boundary condition have been deduced.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
M. Bahrami ◽  
A. Tamayol ◽  
P. Taheri

In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. The model of Bahrami et al. (2006, “Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng., 128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model for pressure drop is a function of geometrical parameters of the channel: cross sectional area, perimeter, polar moment of inertia, and the Knudsen number. The model is successfully validated against existing numerical and experimental data collected from different sources in literature for several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross sections and a variety of gases such as nitrogen, argon, and helium.


1988 ◽  
Vol 110 (2) ◽  
pp. 253-261 ◽  
Author(s):  
S. Fukui ◽  
R. Kaneko

A generalized Reynolds-type lubrication equation valid for arbitrary Knudsen numbers, defined as the ratio of the molecular mean free path to the film thickness, is derived from a linearized Boltzmann equation by semi-numerically calculating the flow rates of fundamental flows in the lubrication film: Poiseuille flow, Couette flow, and thermal creep flow. Numerical analysis of the equation for high Knudsen numbers reveals three principal results. First, Burgdorfer’s modified Reynolds equation featuring the first-order velocity slip boundary condition overestimates load carrying capacities, while the approximation equation including both the first- and second-order velocity slip boundary condition underestimates them. Second, since the flow rate of the Couette flow, which is independent of Knudsen numbers, becomes dominant as the bearing number increases, all the lubrication equation results tend toward the same asymptotic value for an infinite bearing number. Third, a new kind of load carrying capacity caused by thermal creep flow occurs if temperature gradients at the boundaries exist in the flow direction.


Sign in / Sign up

Export Citation Format

Share Document