scholarly journals The Recognition Of Partially Occluded Objects with Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks

Author(s):  
Joseph Lin Chu ◽  
Adam Krzyźak

Abstract Biologically inspired artificial neural networks have been widely used for machine learning tasks such as object recognition. Deep architectures, such as the Convolutional Neural Network, and the Deep Belief Network have recently been implemented successfully for object recognition tasks. We conduct experiments to test the hypothesis that certain primarily generative models such as the Deep Belief Network should perform better on the occluded object recognition task than purely discriminative models such as Convolutional Neural Networks and Support Vector Machines. When the generative models are run in a partially discriminative manner, the data does not support the hypothesis. It is also found that the implementation of Gaussian visible units in a Deep Belief Network trained on occluded image data allows it to also learn to effectively classify non-occluded images

Author(s):  
Majd Latah

Recently, deep learning approach has been used widely in order to enhance the recognition accuracy with different application areas. In this paper, both of deep convolutional neural networks (CNN) and support vector machines approach were employed in human action recognition task. Firstly, 3D CNN approach was used to extract spatial and temporal features from adjacent video frames. Then, support vector machines approach was used in order to classify each instance based on previously extracted features. Both of the number of CNN layers and the resolution of the input frames were reduced to meet the limited memory constraints. The proposed architecture was trained and evaluated on KTH action recognition dataset and achieved a good performance.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 688
Author(s):  
Adrián Vázquez-Romero ◽  
Ascensión Gallardo-Antolín

This paper proposes a speech-based method for automatic depression classification. The system is based on ensemble learning for Convolutional Neural Networks (CNNs) and is evaluated using the data and the experimental protocol provided in the Depression Classification Sub-Challenge (DCC) at the 2016 Audio–Visual Emotion Challenge (AVEC-2016). In the pre-processing phase, speech files are represented as a sequence of log-spectrograms and randomly sampled to balance positive and negative samples. For the classification task itself, first, a more suitable architecture for this task, based on One-Dimensional Convolutional Neural Networks, is built. Secondly, several of these CNN-based models are trained with different initializations and then the corresponding individual predictions are fused by using an Ensemble Averaging algorithm and combined per speaker to get an appropriate final decision. The proposed ensemble system achieves satisfactory results on the DCC at the AVEC-2016 in comparison with a reference system based on Support Vector Machines and hand-crafted features, with a CNN+LSTM-based system called DepAudionet, and with the case of a single CNN-based classifier.


Sign in / Sign up

Export Citation Format

Share Document