scholarly journals Current Source Based on H-Bridge Inverter with Output LCL Filter

2015 ◽  
Vol 66 (5) ◽  
pp. 287-291 ◽  
Author(s):  
Vojtech Blahnik ◽  
Jakub Talla ◽  
Zdenek Peroutka

Abstract The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.

2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2250 ◽  
Author(s):  
Rui Wang ◽  
Qiuye Sun ◽  
Qifu Cheng ◽  
Dazhong Ma

This paper proposes an overall practical stability assessment for a multi-port single-phase solid-state transformer (MS3T) in the electromagnetic timescale. When multiple stable subsystems are combined into one MS3T, the newly formed MS3T has a certain possibility to be unstable. Thus, this paper discusses the stability assessment of the MS3T in detail. First and foremost, the structure of the MS3T and its three stage control strategies are proposed. Furthermore, the stability analysis of each of the MS3T’s subsystems is achieved through the closed loop transfer function of each subsystem, respectively, including an AC-DC front-end side converter, dual active bridge (DAB) with a high-frequency (HF) or medium-frequency (MF) transformer, and back-end side incorporating DC-AC and dc-dc converters. Furthermore, the practical impedance stability criterion in the electromagnetic timescale, which only requires two current sensors and one external high-bandwidth small-signal sinusoidal perturbation current source, is proposed by the Gershgorin theorem and Kirchhoff laws. Finally, the overall stability assessment, based on a modified impedance criterion for the MS3T is investigated. The overall practical stability assessment of the MS3T can be validated through extensive simulation and hardware results.


Sign in / Sign up

Export Citation Format

Share Document