scholarly journals Energy Performance Analysis of Building Envelopes

2021 ◽  
Vol 11 (3) ◽  
pp. 196-206
Author(s):  
Ibrahim Motawa ◽  
Asser Elsheikh ◽  
Esraa Diab

Abstract The building sector has a high level of energy consumption caused mainly by the buildings heating and cooling energy demands to satisfy indoor comfort requirements. Reducing both the amount of energy consumed and the life cycle cost is a main challenge for the construction of buildings. It is evident that sustainable materials have low environmental impacts and need low consumption of energetic resources in addition to their durability and recyclability. Therefore, this research aims to test different sustainable materials available in Egypt for the construction of building envelopes that include local stones “Marble and Limestone” and insulation materials “Polyurethane- expanded and Extruded polystyrene (XPS) foam” in order to achieve savings in energy and total life cycle cost. The simulation tests were conducted through Design Builder software. The results aim to provide solutions for building designers to achieve energy-efficiency and costeffective design. The proposed alternatives showed a significant reduction in energy consumption by up to 62% and the total life cycle costs significantly reduced by up to 45.8%.

2019 ◽  
Vol 9 (7) ◽  
pp. 1285 ◽  
Author(s):  
José D. Silvestre ◽  
André M. P. Castelo ◽  
José J. B. C. Silva ◽  
Jorge M. C. L. de Brito ◽  
Manuel D. Pinheiro

This paper analyses the environmental, energy, and economic performances of the External Thermal Insulation Composite System (ETICS) using agglomerated insulation cork board (ICB) or expanded polystyrene (EPS) as insulation material applied in the energetic renovation of the building envelope during a 50-year study period. A comparison between ETICS using ICB and EPS, for the same time horizon, is also presented. The environmental balance is based on “Cradle to Cradle” (C2C) Life Cycle Assessment (LCA), focusing on the carbon footprint and consumption of nonrenewable primary energy (PE-NRe). The characteristics of these products in terms of thermal insulation, the increased energy performance provided by their installation for retrofit of the buildings’ envelope, and the resulting energy savings are considered in the energy balance. The estimation of the C2C carbon and PE-NRe saved is considered in the final balance between the energy and environmental performances. ETICS with ICB is environmentally advantageous both in terms of carbon footprint and of PE-NRe. In fact, the production stage of ICB is less polluting, while EPS requires lower energy consumption to fulfil the heating and cooling needs of a flat, due to its lower U-Value, and its lower acquisition cost results in a lower C2C cost. Comparing both ETICS’ alternatives with reference solutions, it was found that the latter only perform better in the economic dimension, and only for an energy consumption to fulfil less than 25% of the heating and cooling needs. This paper represents an advance to the current state-of-the-art by including all the life-cycle stages and dimensions of the LCA in the analysis of solutions for energy renovation of building envelopes.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2195
Author(s):  
Belen Moreno Santamaria ◽  
Fernando del Ama Gonzalo ◽  
Matthew Griffin ◽  
Benito Lauret Aguirregabiria ◽  
Juan A. Hernandez Ramos

High initial costs hinder innovative technologies for building envelopes. Life Cycle Assessment (LCA) should consider energy savings to show relevant economic benefits and potential to reduce energy consumption and CO2 emissions. Life Cycle Cost (LCC) and Life Cycle Energy (LCE) should focus on investment, operation, maintenance, dismantling, disposal, and/or recycling for the building. This study compares the LCC and LCE analysis of Water Flow Glazing (WFG) envelopes with traditional double and triple glazing facades. The assessment considers initial, operational, and disposal costs and energy consumption as well as different energy systems for heating and cooling. Real prototypes have been built in two different locations to record real-world data of yearly operational energy. WFG systems consistently showed a higher initial investment than traditional glazing. The final Life Cycle Cost analysis demonstrates that WFG systems are better over the operation phase only when it is compared with a traditional double-glazing. However, a Life Cycle Energy assessment over 50 years concluded that energy savings between 36% and 66% and CO2 emissions reduction between 30% and 70% could be achieved.


2020 ◽  
Vol 207 ◽  
pp. 01014
Author(s):  
Nadezhda Doseva ◽  
Daniela Chakyrova

Nowadays, the application of air-source heat pumps for heating and cooling in residential buildings has been increased significantly. The main occasion for this is the accessibility of a heat source for these devices - the external air. Nevertheless, the increase of the energy efficiency of the air source heat pump systems is a difficult design problem because their capacity and performance are a function of the dynamically changing parameters of the outdoor air. Because of that, the main aim of this study is to develop an approach for choosing a structural scheme of an air-to-water heat pump system under specific climatic conditions. The considered systems are monovalent, bivalent-parallel and bivalent-alternative heat pump systems. In the current paper is conducted a dynamic energy modeling of heating and cooling demand of a typical residential building situated in Varna, Bulgaria and applying the bin temperature data. It is assessed the effect of the heat pump capacity over the annual and seasonal energy performance of the heat pump systems. It is established the effect of the bivalent temperature, cut-off temperature and on-off cycles duration on rates of the criteria for techno-economic assessment. The seasonal coefficient of performance (SCOP), seasonal energy efficiency rate (SEER) and life cycle costs (LCC) of the analyzed heat pump systems are adopted as assessment parameters.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nadezhda Doseva ◽  
Daniela Chakyrova

Abstract Around 60 % of residential buildings in Bulgaria are constructed before the Nineties of the last century, i.e. they have been in use for more than 30 years. Furthermore, the final energy consumption of Bulgarian residential buildings is the highest in Europe. This raises the question of the improvement of the energy performance of existing residential buildings. The current study is intended to assess the influence of the heat transmittance coefficient of the external building envelop elements on the annual energy consumption for heating and cooling and finding its optimal value. Life-cycle cost (LCC) as the optimization criterion is using. The optimization procedure is conducted for the climatic and economic conditions in Bulgaria and taking into account the existing legal framework. The minimum of the building life cycle costs is determined by using a genetic algorithm.


Author(s):  
Safa Nayır ◽  
Ümit Bahadır ◽  
Şakir Erdoğdu ◽  
Vedat Toğan

Energy efficiency in the construction industry is crucial to reducing increased energy consumption. A significant portion of the energy is consumed in residential buildings. Thermal properties of the materials used in the building envelope can reduce the energy consumed in the buildings and thus contribute to the building economy. For this purpose, in the study, structural lightweight concretes (SLWC) with a lower thermal conductivity than normal weight concrete (NWC) were produced and energy efficiency and life cycle costs were compared between these concretes on a 1 + 1 reference flat. The compressive strength, unit weights and thermal conductivity coefficients of SLWCs and NWC were determined experimentally. Heating and cooling energy consumption and life cycle costs for the flat were calculated using the DesignBuilder simulation program according to the different concrete types produced. The results indicate that the thermal conductivity coefficients of all SLWCs produced were about 37–45 % lower than those of NWC. All mixes of the SLWCs provided energy saving by about 18–25 % compared to the NWC and two SLWCs reduced the life cycle cost by 4 %. In addition, the results showed that the best SLWC about energy was not the best SLWC about life cycle cost.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2018 ◽  
Vol 6 (5) ◽  
pp. 340-345
Author(s):  
Rajat Pugaliya ◽  
Madhu B R

Cloud Computing is an emerging field in the IT industry. Cloud computing provides computing services over the Internet. Cloud Computing demand increasing drastically, which has enforced cloud service provider to ensure proper resource utilization with less cost and less energy consumption. In recent time various consolidation problems found in cloud computing like the task, VM, and server consolidation. These consolidation problems become challenging for resource utilization in cloud computing. We found in the literature review that there is a high level of coupling in resource utilization, cost, and energy consumption. The main challenge for cloud service provider is to maximize the resource utilization, reduce the cost and minimize the energy consumption. The dynamic task consolidation of virtual machines can be a way to solve the problem. This paper presents the comparative study of various task consolidation algorithms.


Sign in / Sign up

Export Citation Format

Share Document