scholarly journals Impact of evapotranspiration on discharge in small catchments

2014 ◽  
Vol 62 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Šárka Dvořáková ◽  
Pavel Kovář ◽  
Josef Zeman

Abstract We apply the Linear Storage Model (LSM) to simulate the influence of the evapotranspiration on discharges. High resolution discharge data from two small catchments in the Czech Republic, the Teply Brook and the Starosuchdolsky Brook catchment are used. The results show the runoff process is simpler in a deeper valley of the Starosuchdolsky catchment where the soil zone is deeper and the valley bottom recharges runoff even during very dry periods. Two-soil zone model is adequate to simulate the diurnal runoff variability. Three-soil zone model is needed in the Teply Brook catchment due to the absence of water transport in the most-upper soil zone. Time delays between minimum and maximum discharge during the day reach up to about 20 hours. Evapotranspiration and hydraulic resistances are as high as 14% of catchment daily runoff in the urbanized Starosuchdolsky Brook catchment and 25% of catchment daily runoff in the forested, less impacted Teply Brook catchment

Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.


2014 ◽  
Vol 18 (11) ◽  
pp. 4423-4435 ◽  
Author(s):  
M. Huebsch ◽  
O. Fenton ◽  
B. Horan ◽  
D. Hennessy ◽  
K. G. Richards ◽  
...  

Abstract. Nitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.


2021 ◽  
Vol 645 ◽  
pp. A44
Author(s):  
O. Wucknitz ◽  
L. G. Spitler ◽  
U.-L. Pen

High-precision cosmological probes have revealed a small but significant tension between the parameters measured with different techniques, among which there is one based on time delays in gravitational lenses. We discuss a new way of using time delays for cosmology, taking advantage of the extreme precision expected for lensed fast radio bursts, which are short flashes of radio emission originating at cosmological distances. With coherent methods, the achievable precision is sufficient for measuring how time delays change over the months and years, which can also be interpreted as differential redshifts between the images. It turns out that uncertainties arising from the unknown mass distribution of gravitational lenses can be eliminated by combining time delays with their time derivatives. Other effects, most importantly relative proper motions, can be measured accurately and disentangled from the cosmological effects. With a mock sample of simulated lenses, we show that it may be possible to attain strong constraints on cosmological parameters. Finally, the lensed images can be used as galactic interferometer to resolve structures and motions of the burst sources with incredibly high resolution and help reveal their physical nature, which is currently unknown.


2021 ◽  
Vol 13 (21) ◽  
pp. 4354
Author(s):  
Wei Xu ◽  
Qi Yu ◽  
Chonghua Fang ◽  
Pingping Huang ◽  
Weixian Tan ◽  
...  

Scan-on-receive (SCORE) digital beamforming (DBF) in elevation can significantly improve the signal-to-noise ratio (SNR) and suppress range ambiguities in spaceborne synthetic aperture radar (SAR). It has been identified as one of the important methods to obtain high-resolution wide-swath (HRWS) SAR images. However, with the improvement of geometric resolution and swath width, the residual pulse extension loss (PEL) due to the long pulse duration in the conventional spaceborne onboard DBF processor must be considered and reduced. In this paper, according to the imaging geometry of the spaceborne DBF SAR system, the reason for the large attenuation of the receiving gain at the edge of the wide swath is analyzed, and two improved onboard DBF methods to mitigate the receive gain loss are given and analyzed. Taking account of both the advantages and drawbacks of the two improved DBF methods presented, a novel onboard DBF processor with multi-frequency and multi-group time delays in HRWS SAR is proposed. Compared with the DBF processor only with multi-group time delays, the downlink data rate was clearly reduced, while focusing performance degradation due to phase and amplitude errors between different frequency bands could be mitigated compared with the DBF processor only with multi-frequency time delays. The simulation results of both point and distributed targets validate the proposed DBF processor.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256608
Author(s):  
Martin Mayer ◽  
Martin Šálek ◽  
Anthony David Fox ◽  
Frej Juhl Lindhøj ◽  
Lars Bo Jacobsen ◽  
...  

Advances in bio-logging technology for wildlife monitoring have expanded our ability to study space use and behavior of many animal species at increasingly detailed scales. However, such data can be challenging to analyze due to autocorrelation of GPS positions. As a case study, we investigated spatiotemporal movements and habitat selection in the little owl (Athene noctua), a bird species that is declining in central Europe and verges on extinction in Denmark. We equipped 6 Danish food-supplemented little owls and 6 non-supplemented owls in the Czech Republic with high-resolution GPS loggers that recorded one position per minute. Nightly space use, measured as 95% kernel density estimates, of Danish male owls were on average 62 ha (± 64 SD, larger than any found in previous studies) compared to 2 ha (± 1) in females, and to 3 ± 1 ha (males) versus 3 ± 5 ha (females) in the Czech Republic. Foraging Danish male owls moved on average 4-fold further from their nest and at almost double the distance per hour than Czech males. To create availability data for the habitat selection analysis, we accounted for high spatiotemporal autocorrelation of the GPS data by simulating correlated random walks with the same autocorrelation structure as the actual little owl movement trajectories. We found that habitat selection was similar between Danish and Czech owls, with individuals selecting for short vegetation and areas with high structural diversity. Our limited sample size did not allow us to infer patterns on a population level, but nevertheless demonstrates how high-resolution GPS data can help to identify critical habitat requirements to better formulate conservation actions on a local scale.


Sign in / Sign up

Export Citation Format

Share Document