scholarly journals Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region

Geologos ◽  
2014 ◽  
Vol 20 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Grzegorz Uścinowicz ◽  
Regina Kramarska ◽  
Dorota Kaulbarsz ◽  
Leszek Jurys ◽  
Jerzy Frydel ◽  
...  

Abstract The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction.

Author(s):  
Akira Hirano

AbstractImportant aspects for understanding the effects of climate change on tropical cyclones (TCs) are the frequency of TCs and their tracking patterns. Coastal areas are increasingly threatened by rising sea levels and associated storm surges brought on by TCs. Rice production in Myanmar relies strongly on low-lying coastal areas. This study aims to provide insights into the effects of global warming on TCs and the implications for sustainable development in vulnerable coastal areas in Myanmar. Using TC records from the International Best Track Archive for Climate Stewardship dataset during the 30-year period from 1983 to 2012, a hot spot analysis based on Getis-Ord (Gi*) statistics was conducted to identify the spatiotemporal patterns of TC tracks along the coast of Myanmar. The results revealed notable changes in some areas along the central to southern coasts during the study period. These included a considerable increase in TC tracks (p value < 0.01) near the Ayeyarwady Delta coast, otherwise known as “the rice bowl” of the nation. This finding aligns with trends in published studies and reinforced the observed trends with spatial statistics. With the intensification of TCs due to global warming, such a significant increase in TC experiences near the major rice-producing coastal region raises concerns about future agricultural sustainability.


2017 ◽  
Vol 46 (2) ◽  
pp. 388-419 ◽  
Author(s):  
Sahan T. M. Dissanayake ◽  
Meagan K. Hennessey

We analyze the benefits of incorporating climate change into land conservation decisions using wetland migration under rising sea-levels as a case study. We use a simple and inexpensive decision method, a knapsack algorithm implemented in Excel, with (1) simulation data to show that ignoring sea-level rise predictions lead to suboptimal outcomes, and (2) an application to land conservation in Phippsburg, Maine to show the real-world applicability. The simulation shows an 11-percent to almost 30-percent gain in increased benefits when accounting for sea-level rise. The results highlight that it is possible to, and important to, incorporate sea-level rise into conservation planning.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 131 ◽  
Author(s):  
Zai-Jin You

The mainland coast of China is about 18,000 km long and houses about 70% of China’s largest cities and 50% of its population. For the last few decades, the rapid growth of the Chinese economy has resulted in extensive development of the coastal infrastructure and property, large-scale expansion of coastal ports, excessive reclamation of coastal land, and a significant increase in the coastal population. Previous studies have indicated that tropical cyclones (TCs) have struck the coast of China at a higher frequency and intensity, and TC-induced coastal hazards have resulted in heavy human losses and huge losses to the Chinese coastal economy. In analyzing the long-term and most recent coastal hazard data collected on the coast of China, this study has found that TC-induced storm surges are responsible for 88% of the direct coastal economic losses, while TC-induced large coastal waves have caused heavy loss of human lives, and that the hazard-caused losses are shown to increase spatially from the north to south, peak in the southern coastal sector, and well correlate to storm wave energy flux. The frequency and intensity of coastal hazards on the coast of China are expected to increase in response to future changing TC conditions and rising sea levels. A simple two-parameter conceptual model is also presented for the assessment of coastal inundation and erosion hazards on the coast of China.


2021 ◽  
Author(s):  
◽  
Shivani Patel

<p><b>Science tells us that we are close to the irreversible tipping point into an unknown climate of the Anthropocene in which humanity has no option but to adapt or to be destroyed. Human influence is changing the earth and a major factor is urbanisation. Cities are one of the largest contributors to global climate change.</b></p> <p>This thesis develops a design-led research methodology and approach that develops alternative, speculative landscape intervention strategies to bridge the gap between climate change science and the landscape and the residents of Island Bay, in the city of Wellington, New Zealand. This research aims to take full advantage of new technologies and systems to provide resilient social, ecological and physical solutions for the coastal neighbourhood in the face of climate-related change. These solutions form a comprehensive framework and tools that anticipate a foreseeable future of saturated landscapes. It is a strategy that builds the adaptive capacity of the coastal zone, enhances existing natural systems, accommodates a variety of best coastal management practices and integrates alternative concepts in the coastal neighbourhood adaptation management plan.</p> <p>These solutions address the unpredictable issue of rising sea levels, storm surges and coastal inundation. In addition, the approach fosters urban environment solutions at various scales, such what a property owner can do and what public/private cooperation can do. Overall, this new integrated system approach has the potential to recalibrate urban coastal environments, catalyse resiliency and provide a robust model for designing mitigative, adaptative coastal communities in response to rising sea-levels and to support a new set of relationships between nature and urbanity.</p>


2012 ◽  
Vol 1 (33) ◽  
pp. 10
Author(s):  
Hsiang-Lan Juan ◽  
Tai-Wen Hsu ◽  
Yuan-Jyh Lan ◽  
Yue-Chen Lin ◽  
Ching-Jer Huang

The adaptive capacity of coastal disasters caused by climate change in order to strengthen southwestern Taiwan against natural calamities in the future is investigated in this paper. In Taiwan, the coastal zone suffers from approximately four typhoons each year, and the exceptionally high sea levels caused by storm surges frequently results in coastal disasters and hinders the development of the coastal area. The problems of rising sea levels and frequent typhoons induced by climate change have threatened the Taiwanese coastal environments. These influences as well as serious land subsidence upon a scenario year were carried out in the coastal areas near the cities of Chiayi and Tainan in Taiwan. The present study focuses on the construction of the disaster characteristics on Chiayi and Tainan Coasts, model establishment for situation analysis of water environmental factors, impact estimation and indefinite analysis on disasters, and vulnerability and risk estimation of coastal disasters. An understanding of the marine and meteorological characteristics in coastal zones is conducive to raising the efficiency of the defense against coastal disasters. These results could provide useful information to establish strategies to implement as well as how to analyze the benefits of such a program.


2020 ◽  
Vol 11 (2) ◽  
pp. 247-265
Author(s):  
Rukuh Setiadi ◽  
Joerg Baumeister ◽  
Paul Burton ◽  
Johanna Nalau

This article introduces the concept of ‘Sea Cities’ to emphasize a range of tactics to acknowledge the relationship between the sea and cities. This concept is critical for the possibility of integrating future aquatic-based urbanism to address climate change, and in particular, the issue of rising sea levels, which is currently faced by the majority of coastal cities. We compare and assess the tactics of four sea cities (i.e., to fortify, accommodate, release, and floating) against the case study of Jakarta. Jakarta is deemed to be among the metropolitan cities most vulnerable to sea level rise, owing to overpopulation alongside the fact that its land is sinking rapidly due to massive urban development. In order to understand the prospects and pitfalls of each tactic for Jakarta, we analyse scholarly literature on the subject, official government reports and documents, as well as policy briefs released by governments at the national level. This study finds that massive hard structural solutions are not only insufficient but also ineffective towards solving the challenges of climate change in Jakarta, especially the rising sea level. At the same time, it also identifies that while the combination of accommodating and floating tactics has never been considered as future a planning option, this could enable more resilient and adaptive solutions for the future development trajectory of Jakarta. In doing so, it could also provide important transferrable lessons for other coastal cities, especially those within developing countries.


2016 ◽  
Vol 30 (1) ◽  
pp. 117-136
Author(s):  
SUSANNAH WILLCOX

Abstract‘Climate change inundation’ – the process whereby climate change-related impacts like rising sea levels, higher storm surges, and changing rainfall patterns interact with and exacerbate existing vulnerabilities like poverty, isolation, resource scarcity, and inadequate infrastructure – presents a unique challenge to the territorial, legal, and political infrastructure of low-lying coral atoll island states. This article uses the example of climate change inundation to illustrate some of the shortcomings of the mainstream ‘minimum threshold’ account of statehood. It then proposes an alternative account of the criteria of statehood as a set of overlapping similarities or relationships between state-like entities, drawing on Wittgenstein's concept of ‘family resemblances’. Although problematic in some respects, this family resemblance account provides a broader conceptual space for assessing the merits of alternative forms of statehood.


2021 ◽  
Vol 13 (9) ◽  
pp. 4618
Author(s):  
Crystal Kwan ◽  
Ho Chung Tam

Rural coastal communities face unique disaster risks that will impact interventions throughout the disaster risk reduction (DRR) cycle (mitigation, preparedness, response, and recovery). At the same time, these communities are experiencing an ageing population. As climate change contributes to rising sea levels and an increase in the intensity and frequency of climate-related disasters, older populations living in rural coastal communities face heightened risks. This is a qualitative case study examining the ageing in place (AIP) experiences of older people living in a disaster-prone rural coastal community in Hong Kong—Tai O Village. Findings highlight that: (i) a critical dimension of AIP is their ability to sustain and continue their work, which played a multidimensional role, (ii) local community-based organizations play an instrumental role in providing social support in a disaster context, (iii) more support and resources for mitigation activities are needed, and (iv) while supports exist for AIP and in a disaster situation, the older residents may not utilize such supports. In addition to informing age-friendly DRR programmes and research, these findings inform AIP practices, policies, and research relevant to rural coastal communities.


Author(s):  
Charitha Pattiaratchi ◽  
Yasha Hetzel ◽  
Ivica Janekovic

Throughout history, coastal settlers have had to adapt to periodic coastal flooding. However, as a society we have become increasingly vulnerable to extreme water level events as our cities and our patterns of coastal development become more intricate, populated and interdependent. In addition to this, there is now a real and growing concern about rising sea levels. Accurate estimates of extreme water levels are therefore critical for coastal planning and emergency planning and response. The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore, it is vitally important that the exceedance probabilities of extreme water levels be accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This objectives of this study was to estimate present day extreme sea level exceedance probabilities due to combination of storm surges, tides and mean sea level (including wind-waves) around the coastline of Australia.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/vGaB85VRujs


Sign in / Sign up

Export Citation Format

Share Document