scholarly journals Land Cover Classification using Very High Spatial Resolution Remote Sensing Data and Deep Learning

2020 ◽  
Vol 57 (1-2) ◽  
pp. 71-77
Author(s):  
R. Ķēniņš

AbstractThe paper describes the process of training a convolutional neural network to segment land into its labelled land cover types such as grass, water, forest and buildings. This segmentation can promote automated updating of topographical maps since doing this manually is a time-consuming process, which is prone to human error. The aim of the study is to evaluate the application of U-net convolutional neural network for land cover classification using countrywide aerial data. U-net neural network architecture has initially been developed for use in biomedical image segmentation and it is one of the most widely used CNN architectures for image segmentation. Training data have been prepared using colour infrared images of Ventspils town and its digital surface model (DSM). Forest, buildings, water, roads and other land plots have been selected as classes, into which the image has been segmented. As a result, images have been segmented with an overall accuracy of 82.9 % with especially high average accuracy for the forest and water classes.

Author(s):  
B. Liu ◽  
S. Du ◽  
X. Zhang

Abstract. Land cover map is widely used in urban planning, environmental monitoring and monitoring of the changing world. This paper proposes a framework with convolutional neural network (CNN), object-based voting and conditional random field (CRF) for land cover classification. Both very-high-resolution (VHR) remote sensing images and digital surface model (DSM) are inputs of this CNN model. To solve the “salt and pepper” effect caused by pixel-based classification, an object-based voting classification is performed. And to capture accurate boundary of ground objects, a CRF optimization using spectral information, DSM and deep features extracted through CNN is applied. Area one of Vaihingen datasets is used for experiment. The experimental results show that method proposed in this paper achieve an overall accuracy of 95.57%, which demonstrate the effectiveness of proposed method.


Author(s):  
Y. Dang ◽  
J. Zhang ◽  
Y. Zhao ◽  
F. Luo ◽  
W. Ma ◽  
...  

Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can’t be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image’s membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation of DLG-DOM coupling land-cover classification or other kinds of labelled remote sensing data can be further studied.


Author(s):  
Naftaly Wambugu ◽  
Yiping Chen ◽  
Zhenlong Xiao ◽  
Mingqiang Wei ◽  
Saifullahi Aminu Bello ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2019 ◽  
Vol 11 (9) ◽  
pp. 1006 ◽  
Author(s):  
Quanlong Feng ◽  
Jianyu Yang ◽  
Dehai Zhu ◽  
Jiantao Liu ◽  
Hao Guo ◽  
...  

Coastal land cover classification is a significant yet challenging task in remote sensing because of the complex and fragmented nature of coastal landscapes. However, availability of multitemporal and multisensor remote sensing data provides opportunities to improve classification accuracy. Meanwhile, rapid development of deep learning has achieved astonishing results in computer vision tasks and has also been a popular topic in the field of remote sensing. Nevertheless, designing an effective and concise deep learning model for coastal land cover classification remains problematic. To tackle this issue, we propose a multibranch convolutional neural network (MBCNN) for the fusion of multitemporal and multisensor Sentinel data to improve coastal land cover classification accuracy. The proposed model leverages a series of deformable convolutional neural networks to extract representative features from a single-source dataset. Extracted features are aggregated through an adaptive feature fusion module to predict final land cover categories. Experimental results indicate that the proposed MBCNN shows good performance, with an overall accuracy of 93.78% and a Kappa coefficient of 0.9297. Inclusion of multitemporal data improves accuracy by an average of 6.85%, while multisensor data contributes to 3.24% of accuracy increase. Additionally, the featured fusion module in this study also increases accuracy by about 2% when compared with the feature-stacking method. Results demonstrate that the proposed method can effectively mine and fuse multitemporal and multisource Sentinel data, which improves coastal land cover classification accuracy.


2020 ◽  
Vol 10 (7) ◽  
pp. 1494-1505
Author(s):  
Hyo-Hun Kim ◽  
Byung-Woo Hong

In this work, we present an image segmentation algorithm based on the convolutional neural network framework where the scale space theory is incorporated in the course of training procedure. The construction of data augmentation is designed to apply the scale space to the training data in order to effectively deal with the variability of regions of interest in geometry and appearance such as shape and contrast. The proposed data augmentation algorithm via scale space is aimed to improve invariant features with respect to both geometry and appearance by taking into consideration of their diffusion process. We develop a segmentation algorithm based on the convolutional neural network framework where the network architecture consists of encoding and decoding substructures in combination with the data augmentation scheme via the scale space induced by the heat equation. The quantitative analysis using the cardiac MRI dataset indicates that the proposed algorithm achieves better accuracy in the delineation of the left ventricles, which demonstrates the potential of the algorithm in the application of the whole heart segmentation as a compute-aided diagnosis system for the cardiac diseases.


Sign in / Sign up

Export Citation Format

Share Document