ROTATION ERROR MODELING AND IDENTIFICATION FOR ROBOT KINEMATIC CALIBRATION BY CIRCLE POINT METHOD

2014 ◽  
Vol 21 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Jorge Santolaria ◽  
Javier Conte ◽  
Marcos Pueo ◽  
Carlos Javierre

Abstract Screw axis measurement methods obtain a precise identification of the physical reality of the industrial robots’ geometry. However, these methods are in a clear disadvantage compared to mathematical optimisation processes for kinematical parameters. That’s because mathematical processes obtain kinematical parameters which best reduce the robot errors, despite not necessarily representing the real geometry of the robot. This paper takes the next step at the identification of a robot’s movement from the identification of its real kinematical parameters for the later study of every articulation’s rotation. We then obtain a combination of real kinematic and dynamic parameters which describe the robot’s movement, improving its precision with a physical understanding of the errors.

CIRP Annals ◽  
2006 ◽  
Vol 55 (1) ◽  
pp. 1-6 ◽  
Author(s):  
A. Watanabe ◽  
S. Sakakibara ◽  
K. Ban ◽  
M. Yamada ◽  
G. Shen ◽  
...  

2021 ◽  
Vol 2021 (0) ◽  
pp. 605
Author(s):  
Yutaro NAGATOMO ◽  
Jinghui LI ◽  
Yasuaki TANAKA ◽  
Yusuke MAEDA

Author(s):  
Zhi Wang ◽  
Huimin Dong ◽  
Shaoping Bai ◽  
Delun Wang

A new approach for kinematic calibration of industrial robots, including the kinematic pair errors and the link errors, is developed in this paper based on the kinematic invariants. In most methods of kinematic calibration, the geometric errors of the robots are considered in forms of variations of the link parameters, while the kinematic pairs are assumed ideal. Due to the errors of mating surfaces in kinematic pairs, the fixed and moving axes of revolute pairs, or the fixed and moving guidelines of prismatic pairs, are separated, which can be concisely identified as the kinematic pair errors and the link errors by means of the kinematic pair errors model, including the self-adaption fitting of a ruled surface, or the spherical image curve fitting and the striction curve fitting. The approach is applied to the kinematic calibration of a SCARA robot. The discrete motion of each kinematic pair in the robot is completely measured by a coordinate measuring machine. Based on the global kinematic properties of the measured motion, the fixed and moving axes, or guidelines, of the kinematic pairs are identified, which are invariants unrelated to the positions of the measured reference points. The kinematic model of the robot is set up using the identified axes and guidelines. The results validate the approach developed has good efficiency and accuracy.


Author(s):  
G. Z. Qian ◽  
K. Kazerounian

Abstract In the continuation of a kinematic calibration method developed in a previous report, a new dynamic calibration model for serial robotic manipulators is presented in this paper. This model is based on the Zero Position Analysis Method. It entails the process of estimating the errors in the robot’s dynamic parameters by assuming that the kinematic parameters are free of errors. The convergence and effectiveness of the model are demonstrated through numerical simulations.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Haitao Liu ◽  
Tian Huang ◽  
Derek G. Chetwynd

This paper presents a general and systematic approach for geometric error modeling of lower mobility manipulators. The approach can be implemented in three steps: (1) development of a linear map between the pose error twist and source errors within an individual limb using the homogeneous transformation matrix method; (2) formulation of a linear map between the pose error twist and the joint error intensities of a lower mobility parallel manipulator; and (3) combination of these two models. The merit of this approach lies in that it enables the source errors affecting the compensatable and uncompensatable pose accuracy of the platform to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement achievable by suitable measures, i.e., component tolerancing in design, manufacturing and assembly processes, and kinematic calibration. Three typical and well-known parallel manipulators are taken as examples to illustrate the generality and effectiveness of this approach.


Author(s):  
Guanghui Liu ◽  
Qiang Li ◽  
Lijin Fang ◽  
Bing Han ◽  
Hualiang Zhang

Purpose The purpose of this paper is to propose a new joint friction model, which can accurately model the real friction, especially in cases with sudden changes in the motion direction. The identification and sensor-less control algorithm are investigated to verify the validity of this model. Design/methodology/approach The proposed friction model is nonlinear and it considers the angular displacement and angular velocity of the joint as a secondary compensation for identification. In the present study, the authors design a pipeline – including a manually designed excitation trajectory, a weighted least squares algorithm for identifying the dynamic parameters and a hand guiding controller for the arm’s direct teaching. Findings Compared with the conventional joint friction model, the proposed method can effectively predict friction factors during the dynamic motion of the arm. Then friction parameters are quantitatively obtained and compared with the proposed friction model and the conventional friction model indirectly. It is found that the average root mean square error of predicted six joints in the proposed method decreases by more than 54%. The arm’s force control with the full torque using the estimated dynamic parameters is qualitatively studied. It is concluded that a light-weight industrial robot can be dragged smoothly by the hand guiding. Practical implications In the present study, a systematic pipeline is proposed for identifying and controlling an industrial arm. The whole procedure has been verified in a commercial six DOF industrial arm. Based on the conducted experiment, it is found that the proposed approach is more accurate in comparison with conventional methods. A hand-guiding demo also illustrates that the proposed approach can provide the industrial arm with the full torque compensation. This essential functionality is widely required in many industrial arms such as kinaesthetic teaching. Originality/value First, a new friction model is proposed. Based on this model, identifying the dynamic parameter is carried out to obtain a set of model parameters of an industrial arm. Finally, a smooth hand guiding control is demonstrated based on the proposed dynamic model.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu

As a new type of manufacturing equipment, redundant hybrid machines have the theoretical advantage over the traditional serial machines in efficiently processing large structural parts with high material removal ratio and complex parts with curved surfaces. In order to solve the accuracy problem of the redundantly actuated spatial parallel module of a five-axis hybrid machine, an improved kinematic calibration method is proposed in this article. First, different from error modeling for the corresponding non-redundant parallel module, the geometric error model of the redundantly actuated spatial parallel module considers the deformations at active joints caused by actuation redundancy as an error source. Then, the applicable error model is developed using projection technique to remove the need of active joints’ stiffness measurement or modeling. Later, the practical error model is derived from model reduction method to avoid using additional sensors or gratings. Finally, three forms of relative measurement and step identification are adopted for the calibration work, and the bilinear interpolation compensation function is introduced to ensure the calibration effect. On this basis, the kinematic calibration of the redundantly actuated spatial parallel module is conducted. The max position errors are reduced from original −0.192 to 0.075 mm after RM1 and SI1, and then further reduced to 0.014 mm after bilinear interpolation compensation, while the max orientation errors are reduced from −0.017° and 0.249° to −0.005° and −0.007° after RM2 and SI2, and RM3 and SI3, respectively. A contrasting experiment is also carried out with the previous method for the corresponding non-redundant parallel module. As a result, the proposed method shows better convergence value and speed in identifying error parameters, and therefore the effectiveness and efficiency of the proposed method for the redundantly actuated spatial parallel module are validated.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Fengxuan Zhang ◽  
Silu Chen ◽  
Yongyi He ◽  
Guoyun Ye ◽  
Chi Zhang ◽  
...  

This paper proposes a method for kinematic calibration of a 3T1R, 4-degree-of-freedom symmetrical parallel manipulator driven by two pairs of linear actuators. The kinematic model of the individual branched chain is established by using the local product of exponentials formula. Based on this model, the model of the end effector’s pose error is established from a pair of symmetrical branched chains, and a recursive least square method is applied for the parameter identification. By installing built-in sensors at the passive joints, a calibration method for a serial manipulator is eventually extended to this parallel manipulator. Specifically, the sensor installed at the second revolute joint of each branched chain is saved, replaced by numerical calculation according to kinematic constraints. The simulation results validate the effectiveness of the proposed kinematic error modeling and identification methods. The procedure for pre-processing compensation on this 3T1R parallel manipulator is eventually given to improve its absolute positioning accuracy, using the inverse of the calibrated kinematic model.


Sign in / Sign up

Export Citation Format

Share Document