scholarly journals Investigation of Cu(In, Ga)Se2 solar cell performance with non-cadmium buffer layer using TCAD-SILVACO

2018 ◽  
Vol 36 (3) ◽  
pp. 514-519
Author(s):  
Bechlaghem Sara ◽  
Zebentout Baya ◽  
Benamara Zineb

AbstractThe purpose of this work is to achieve the best efficiency of Cu(In, Ga)Se2 solar cells by replacing the CdS buffer layer with other nontoxic materials. The simulation tool used in this study is Silvaco-Atlas package based on digital resolution 2D transport equations governing the conduction mechanisms in semiconductor devices. The J-V characteristics are simulated under AM1.5G illumination. Firstly, we will report the modeling and simulation results of CdS/CIGS solar cell, in comparison with the previously reported experimental results [1]. Secondly, the photovoltaic parameters will be calculated with CdS buffer layer and without any buffer layer to understand its impact on the output parameters of solar cells. The simulation is carried out with the use of electrical and optical parameters chosen judiciously for different buffers (CdS, ZnOS and ZnSe). In comparison to simulated CdS/CIGS, the best photovoltaic parameters have been obtained with ZnOS buffer layer. The structure has almost the same open circuit voltage Voc and fill factor FF, and higher short circuit current density Jsc, which results in slightly higher conversion efficiencies.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1241 ◽  
Author(s):  
Bilel Chouchen ◽  
Mohamed Hichem Gazzah ◽  
Abdullah Bajahzar ◽  
Hafedh Belmabrouk

In this paper, a numerical model allows to analyze the photovoltaic parameters according to the electronic properties of InxGa1−xN/GaN MQW solar cells under the effect of temperature, the number of quantum wells and indium composition. The numerical investigation starts from the evaluation through the finite difference (FDM) simulation of the self-consistent method coupled with the photovoltaic parameters taking into account the effects of the spontaneous and piezoelectric polarization. The results found were consistent with the literature. As expected, the temperature had a negative impact on the performance of InGaN/GaN MQW solar cells. However, increasing the number of quantum wells improves cell performance. This positive impact further improves with the increase in the indium rate. The obtained results were 28 mA/cm2 for the short-circuit current density, 1.43 V for the open-circuit voltage, and the obtained conversion efficiency was 31% for a model structure based on 50-period InGaN/GaN-MQW-SC under 1-sun AM1.5G.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Do Yun Kim ◽  
Ihsanul Afdi Yunaz ◽  
Shunsuke Kasashima ◽  
Shinsuke Miyajima ◽  
Makoto Konagai

AbstractOptical, electrical and structural properties of silicon films depending on hydrogen flow rate (RH), substrate temperature (TS), and deposition pressure (PD) were investigated. By decreasing RH and increasing TS and PD, the optical band gap (Eopt) of silicon thin films drastically declined from 1.8 to 1.63 eV without a big deterioration in electrical properties. We employed all the investigated Si thin films for p-i-n structured solar cells as absorbers with i-layer thickness of 300 nm. From the measurement of solar cell performances, it was clearly observed that spectral response in long wavelength was enhanced as Eopt of absorber layers decreased. Using the solar cell whose Eopt of i-layer was 1.65 eV, the highest QE at long wavelength with the short circuit current density (Jsc) of 16.34 mA/cm2 was achieved, and open circuit voltage (Voc), fill factor (FF), and conversion efficiency (η) were 0.66 V, 0.57, and 6.13%, respectively.


2015 ◽  
Vol 761 ◽  
pp. 341-346 ◽  
Author(s):  
Ahmad Aizan Zulkefle ◽  
Maslan Zainon ◽  
Zaihasraf Zakaria ◽  
Mohd Ariff Mat Hanafiah ◽  
Nurul Huda Abdul Razak ◽  
...  

This paper presents the performance between silicon germanium (SiGe) and crystalline germanium (Ge) solar cells in terms of their simulated open circuit voltage, short circuit current density, fill factor and efficiency. The PC1D solar cell modeling software has been used to simulate and analyze the performance for both solar cells, and the total thickness is limited to 1μm of both SiGe and Ge solar cells. The Si0.1Ge0.9 thickness is varied from 10nm to 100nm to examine the effect of Si0.1Ge0.9 thickness on SiGe solar cell. The result of simulation exhibits the SiGe solar cell give a better performance compared to Ge solar cell. The efficiency of 9.74% (VOC = 0.48V, JSC = 27.86mA/cm2, FF =0.73) is achieved with Si0.1Ge0.9 layer of 0.1μm in thickness whilst 2.73% (VOC = 0.20V, JSC = 27.31mA/cm2, FF =0.50) efficiency is obtained from Ge solar cell.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012075
Author(s):  
Ammar J. Aswad ◽  
Nadeem K. Hassan ◽  
Adnan R. Ahmed

Abstract A general equation to determine properties of penternary solar cell based on Cu (In, Ga) (Se, S) 2 (CIGSSe) with a double buffer layer ZnS/Zn0.8Mg0.2O(ZMO) were derived. Numerical analysis of a (CIGSSe) solar cell with a double buffer layer ZnS/ZMO, CdS free absorber layer, were investigated using the AFORS-HET software simulation. Taking into consideration the effect of thickness and doping concentration for the CIGSSe absorption layer, ZnS buffer layer and ZnO:B(BZO) window layer on the electron transport, short circuit current density (Jsc) and open circuit voltage (Voc); numerical simulation demonstrated that the changes in band structure characteristics occurred. The solar energy conversion efficiency is 28.34%, the filling factor is 85.59%, the open circuit voltage is 782.3 mV, the short circuit current is 42.32 mA. then we take the range of the gradient between the ratio of x and y for the absorption layer, and the best result of Voc, Jsc, FF, Eff equal (838.7 mV, 40.94 mA/cm2, 86.23%, 29.61%) respectively at x= 0, y= 0.26.


2014 ◽  
Vol 924 ◽  
pp. 193-199 ◽  
Author(s):  
Huang Zhong Yu

The degradation of the performance of the polymer solar cell based on the blend structures system of poly (3-hexylthiophene) (P3HT) and [6,-phenyl C61-butyric acid methyl ester (PCBM) is investigated. This study uses UV-vis absorption spectra, photoluminescence (PL) spectra, charge-transport dark J-V curve chart to explicate the reason for the degradation of the performance of P3HT:PCBM photovoltaic cells. Solar cell performance is degraded primarily through loss in short-circuit current density (Jsc) and fill factor (FF), the reduction in the Jsc and FF of the device is most likely to be due to the formation of the charge transfer complex, deep traps and destruction of the-conjugated system in the degraded P3HT:PCBM device. The exposure to oxygen and photo-oxidation lead to the emergence of these factors of the device performance degradation. Keywords: Degradation; Performance; Solar cells; P3HT: PCBM


2004 ◽  
Vol 808 ◽  
Author(s):  
Keda Wang ◽  
Anthon Canning ◽  
J.R. Weinberg-Wolf ◽  
E.C.T. Harley ◽  
Daxing Han ◽  
...  

ABSTRACTWe used Raman and photoluminescence (PL) spectroscopy to study the relationship between the material properties and the solar cell performance of hydrogenated nanocrystalline silicon (nc-Si:H). The crystalline volume fraction (fc) was deduced from the Raman spectrum. Generally, a high fc leads to a high short circuit current density and a low open circuit voltage. PL spectra were measured using 632.8-nm and 442-nm laser lines. There are two distinguished PL peaks at 80 K, one at ∼1.4 eV originating from the amorphous region, while the other at = 0.9 eV from the nanocrystalline grain boundary regions. Generally, the intensity fraction of this low energy PL peak, IPLc/(IPLa+IPLc), was larger for 442-nm than 632.8-nm excitation, indicating an increase in crystallinity along the growth direction. However, for the best initial performance cells obtained by H2 dilution profiling and the i/p buffer layer, the intensity fraction IPLc/(IPLa+IPLc) decreased from the bulk to the topi/p interface. The Raman and PL results give insight into the correlation between the microstructures and the cell performance, and verified that properly-controlled crystallinity in the intrinsic layer and buffer layer at the i/p interface layer are important for optimizing nc-Si:H solar cells.


Author(s):  
Rachid Chaoui ◽  
Bedra Mahmoudi ◽  
Yasmine Si Ahmed

Stain etching of silicon solar cells in HF-FeCl3-H2O solutions as a last step in the processing sequence is reported. The etching was carried out without protecting the screen printed contacts. Following optimization of the solution composition and using very short etching times to alleviate the contact degradation problem, the solar cell weighted reflectance (Rw) between 400 and 1100 nm could be reduced from 38.23% to 11.54%. For the best small area cell (~20 cm2), the PS antireflective layer led to a relative improvement of 62.74% in the short-circuit current density, the FF was enhanced by 5.5% absolute, the open-circuit voltage was increased by 1.2 mV and the cell conversion efficiency was raised by 4.1% absolute from 5.4% to 9.5%. The best large area cell (~78 cm2) shows the following changes after porous layer formation: a relative improvement of 45.43% in the short-circuit current density, an improvement in the FF of 7.4% absolute, an increase in the open-circuit voltage by 7.5 mV and an enhancement in the cell efficiency by 4.0% absolute from 6.2% to 10.2%. This method shows a great potential for the cost-effective reduction of reflectance losses in industrial silicon solar cell manufacturing.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Sign in / Sign up

Export Citation Format

Share Document