photovoltaic parameters
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 56)

H-INDEX

17
(FIVE YEARS 6)

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1352-1360
Author(s):  
Karan Surana ◽  
R. M. Mehra ◽  
Saurabh S. Soni ◽  
Bhaskar Bhattacharya

Carbon QD showing bright blue fluorescence aid in improving the photovoltaic parameters in a co-sensitized solar cell. Time-dependent I–V analysis revealed the real-time functioning of the device.


2021 ◽  
Author(s):  
◽  
Silvina Pugliese

<p>The development of efficient and low cost photovoltaic technologies is key to a more sustainable energy pathway for future generations. Research efforts aimed at improving the performance of organic photovoltaic (OPV) materials have resulted in a continuous growth in power conversion efficiency (PCE) over time, with a recent maximum PCE value of 18.22% in a single bulk heterojunction device. However, further improved efficiency, stability and cost reduction are required in order for OPVs to succeed in the market.   To produce better performing OPV devices in a rational way, it is necessary to understand the relationships between material properties (e.g. energy levels, recombination rates, charge carrier mobilities) and the photovoltaic parameters. This requires combining different fundamental techniques, such as spectroscopic, electrical and structural studies of the materials. In this thesis work we contribute to the understanding of the mechanisms of charge photo-current generation in OPV layers by using transient absorption spectroscopy (TAS) to directly measure the fate of the photo-excited species created upon light absorption. In particular, we contribute to the understanding of the dynamical properties of tightly bound, interfacial charge-transfer (CT) states at the donor:acceptor heterojunction. We disentangle the contributions from individual transient species to the overall TAS signal via the soft-modelling algorithm known as Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS), and we use simple kinetic models to retrieve associated kinetic rates.   Our first study explores the photo-physics of a family of polymers derived from the low-band-gap alternating copolymer PTBT where the sulphur atom in the thiadiazole unit was substituted with oxygen or selenium. The literature shows that replacing a single atom in the donor or acceptor unit of a polymer donor can cause large changes in the photovoltaic parameters, which cannot be explained considering only the variations in the optical band-gap. Opposite results have been reported on systems where a sulfur atom is replaced by selenium, and spectroscopic studies were lacking. Our TAS results on PTBO and PTBSe systems explain the superior photovoltaic performance of the original sulfur-containing variant PTBT, highlighting the low tolerance of these materials to backbone substitutions. In both PTBO and PTBSe systems, we identify strong recombination of geminate CT pairs as the major limiting factor of the Jsc and FF photovoltaic parameters. This is attributed to unfavourable electronic and conformational properties at the donor:acceptor interface. In the particular case of PTBSe:PC61BM, the recombination pathway of CT states with triplet character into the triplet exciton manifold is facilitated by the heavy atom effect, in addition to a highly intermixed morphology.   Our second study comprises the spectroscopic comparison between fullerene and nonfullerene (NFA) OPV layers. The PCE of OPV devices was reaching a plateau in past years, which was overcomed thanks to the development of high efficiency NFA acceptors. Here, we compare charge generation and recombination between three systems featuring the same polymer donor PPDT2FBT matched with three different acceptors, namely the fullerene acceptor PC70BM, the small molecule nonfullerene acceptor NIDCS-HO and the polymeric acceptor N2200. Our results provide insight on the processes that limit the performance of each device, showing that small molecule NFA are promising acceptors, since morphology and disorder, the factors that we have found to be limiting the device performance, could potentially be tuned for the development of more efficient materials. For the all-polymer device based on the N2200 acceptor, we find that both geminate and nongeminate recombination are limiting the photovoltaic performance.  Lastly, we investigate charge carrier dynamics in a series of solar devices composed predominantly of C60 and small amounts of organic small molecule donors, where their CT state energies are systematically varied. The well-defined microstructure in low-donor-content OPV blends makes it easier to correlate macroscopic properties to molecular parameters. Our results, in combination with time-delayed collection field (TDCF), and external quantum efficiency measurements (EQE) measurements at different bias performed by our collaborators, allow us to identify geminate recombination as the major loss channel. We find that the dynamics of the CT decay are connected to the CT state energy via the energy-gap law. In this way, the energy of the CT state is identified as the main parameter determining the efficiency of photocurrent generation in these morphologically well-defined donor:acceptor blends.  Overall, the contributions in this thesis work demonstrate how TAS measurements can provide valuable information to construct a comprehensive picture of the underpinning mechanisms of charge photo-current generation in OPV layers, in particular by isolating the dynamical properties of interfacial charge-transfer (CT) states at the donor:acceptor heterojunction via modelling.</p>


2021 ◽  
Author(s):  
◽  
Silvina Pugliese

<p>The development of efficient and low cost photovoltaic technologies is key to a more sustainable energy pathway for future generations. Research efforts aimed at improving the performance of organic photovoltaic (OPV) materials have resulted in a continuous growth in power conversion efficiency (PCE) over time, with a recent maximum PCE value of 18.22% in a single bulk heterojunction device. However, further improved efficiency, stability and cost reduction are required in order for OPVs to succeed in the market.   To produce better performing OPV devices in a rational way, it is necessary to understand the relationships between material properties (e.g. energy levels, recombination rates, charge carrier mobilities) and the photovoltaic parameters. This requires combining different fundamental techniques, such as spectroscopic, electrical and structural studies of the materials. In this thesis work we contribute to the understanding of the mechanisms of charge photo-current generation in OPV layers by using transient absorption spectroscopy (TAS) to directly measure the fate of the photo-excited species created upon light absorption. In particular, we contribute to the understanding of the dynamical properties of tightly bound, interfacial charge-transfer (CT) states at the donor:acceptor heterojunction. We disentangle the contributions from individual transient species to the overall TAS signal via the soft-modelling algorithm known as Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS), and we use simple kinetic models to retrieve associated kinetic rates.   Our first study explores the photo-physics of a family of polymers derived from the low-band-gap alternating copolymer PTBT where the sulphur atom in the thiadiazole unit was substituted with oxygen or selenium. The literature shows that replacing a single atom in the donor or acceptor unit of a polymer donor can cause large changes in the photovoltaic parameters, which cannot be explained considering only the variations in the optical band-gap. Opposite results have been reported on systems where a sulfur atom is replaced by selenium, and spectroscopic studies were lacking. Our TAS results on PTBO and PTBSe systems explain the superior photovoltaic performance of the original sulfur-containing variant PTBT, highlighting the low tolerance of these materials to backbone substitutions. In both PTBO and PTBSe systems, we identify strong recombination of geminate CT pairs as the major limiting factor of the Jsc and FF photovoltaic parameters. This is attributed to unfavourable electronic and conformational properties at the donor:acceptor interface. In the particular case of PTBSe:PC61BM, the recombination pathway of CT states with triplet character into the triplet exciton manifold is facilitated by the heavy atom effect, in addition to a highly intermixed morphology.   Our second study comprises the spectroscopic comparison between fullerene and nonfullerene (NFA) OPV layers. The PCE of OPV devices was reaching a plateau in past years, which was overcomed thanks to the development of high efficiency NFA acceptors. Here, we compare charge generation and recombination between three systems featuring the same polymer donor PPDT2FBT matched with three different acceptors, namely the fullerene acceptor PC70BM, the small molecule nonfullerene acceptor NIDCS-HO and the polymeric acceptor N2200. Our results provide insight on the processes that limit the performance of each device, showing that small molecule NFA are promising acceptors, since morphology and disorder, the factors that we have found to be limiting the device performance, could potentially be tuned for the development of more efficient materials. For the all-polymer device based on the N2200 acceptor, we find that both geminate and nongeminate recombination are limiting the photovoltaic performance.  Lastly, we investigate charge carrier dynamics in a series of solar devices composed predominantly of C60 and small amounts of organic small molecule donors, where their CT state energies are systematically varied. The well-defined microstructure in low-donor-content OPV blends makes it easier to correlate macroscopic properties to molecular parameters. Our results, in combination with time-delayed collection field (TDCF), and external quantum efficiency measurements (EQE) measurements at different bias performed by our collaborators, allow us to identify geminate recombination as the major loss channel. We find that the dynamics of the CT decay are connected to the CT state energy via the energy-gap law. In this way, the energy of the CT state is identified as the main parameter determining the efficiency of photocurrent generation in these morphologically well-defined donor:acceptor blends.  Overall, the contributions in this thesis work demonstrate how TAS measurements can provide valuable information to construct a comprehensive picture of the underpinning mechanisms of charge photo-current generation in OPV layers, in particular by isolating the dynamical properties of interfacial charge-transfer (CT) states at the donor:acceptor heterojunction via modelling.</p>


Author(s):  
Wanxin Ding ◽  
Longhua Li

Abstract Antimony selenide, Sb2Se3, has been attracted widespread attention in photovoltaic applications due to its high absorption coefficient and suitable band gap. However, the influence of uniaxial strain and electric field on the electronic and photovoltaic properties of multilayer Sb2Se3 is still unknown. Here, the quantitative relationship, such as strain-property, electric field-property, as well as thickness-property, is explored via first-principles calculations. Our results demonstrate that the band gap and photovoltaic parameters (Jsc, Voc, FF and PCE) of multilayer Sb2Se3 are not only affected by the uniaxial strain and electric field, but can also be tuned via the coupling of thickness with strain and electric field. The band-gap of multilayer Sb2Se3 is linear dependent on uniaxial strain and external electric field. We found that the effect of strain on the photovoltaic parameters could be negligible as compared with the effect of thickness. However, the effect of electric field is thickness dependent, 1 ‒ 2 layer(s) thin films are not affected while the impact of electric field increases with the increasing thickness. The quantitative strain (electric field)-properties relation of multilayer Sb2Se3 suggesting that Sb2Se3 films have a potential application in the field of strain and electric field sensors.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012042
Author(s):  
A.D. Furasova ◽  
G. Hix ◽  
S.V. Makarov ◽  
A. Di Carlo

Abstract The improvement of lead halide perovskites solar cells (PSC) by hydrophobic metal-organic frameworks (MOF) is one of the promising tools for modern photovoltaic technology to achieve stable and efficient thin-film devices. To show the MOF applicability for PSC, we incorporate two types of MOF: NH2-MIL-53(Al) and basolite Z1200 in n-i-p mesoporous MAPbI3 based solar cells that can add 2.2% efficiency by increasing main photovoltaic parameters. The simplicity of the proposed MOF’s integration allows to use and adopt this approach to incorporate other frameworks for thin-film perovskite devices.


2021 ◽  
pp. 102884
Author(s):  
Sourav Roy ◽  
Nibir Mondol ◽  
Md. Sanwar Hossain ◽  
Ashraful Hossain Howlader ◽  
Md. Jubayer Hossain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document