scholarly journals Meso Mechanical Study of Cracking Process in Concrete Subjected to Tensile Loading

2018 ◽  
Vol 59 (1) ◽  
pp. 13-29 ◽  
Author(s):  
Mathias Flansbjer ◽  
Jan Erik Lindqvist

Abstract This project focused on how the cracking process in concrete is influenced by both the micro and meso structures of concrete. The aim was to increase knowledge pertaining to the effect of critical parameters on the cracking process and how this is related to the material’s macroscopic properties. A methodology based on the combination of different experimental methods and measuring techniques at different scales was developed. Crack propagation during tensile loading of small-scale specimens in a tensile stage was monitored by means of Digital Image Correlation (DIC) and Acoustic Emission (AE). After testing, crack patterns were studied using fluorescence microscopy.

2019 ◽  
Vol 18 (5-6) ◽  
pp. 1686-1697 ◽  
Author(s):  
Wen-zheng Zhao ◽  
Wei Zhou

Understanding the damage and failure of carbon/glass epoxy hybrid woven composites under tensile loading based on acoustic emission signals is a challenging task in their practical uses. In this study, an approach based on fuzzy c-means algorithm is proposed to process the acoustic emission signals from tensile loading of composites monitored by combining acoustic emission technology and digital image correlation method. The results show that the acoustic emission signals from tensile loading can be divided into three clusters. The three clusters correspond to three kinds of damage modes including matrix cracking, fiber/matrix debonding, delamination, and fiber breakage. By comparing the acoustic characteristics of these classes, a correlation procedure between the clusters and the damage mechanisms observed is proposed. Meanwhile, it can be found that debonding and fiber break signals for glass fiber correspond to a lower frequency range than that for carbon fiber. Moreover, the method combining acoustic emission and digital image correlation can effectively monitor the damage process of the specimen both on the inside and outside, which can provide a reference for the health monitoring of composite structure.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 39
Author(s):  
Alexandra Coșa ◽  
Bogdan Hegheș ◽  
Camelia Negruțiu ◽  
Zoltan Kiss

In structural engineering, strain and displacement are critical parameters, and measuring these parameters outside of the laboratory is a challenge for concrete researchers. Recent advances have enabled digital image correlation (DIC) to calculate the concrete surface displacements of chosen targets in a series of images recorded during an experiment. This paper presents a comparison between traditional and optical measurements to evaluate the efficiency of the DIC technique in recording the deformations of reinforced concrete beams. Tests were perfomed on two small-scale reinforced self-compacting concrete beams with small circular openings in 3-point bending.


Sign in / Sign up

Export Citation Format

Share Document