scholarly journals Land Use and Land Cover Change for Resilient Environment and Sustainable Development in the Ethiopian Rift Valley Region

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Getahun Hassen ◽  
Amare Bantider ◽  
Abiyot Legesse ◽  
Malesu Maimbo ◽  
Dereje Likissa

Abstract Land use and land cover change (LULCC) are the result of different interacting socio-economic and environmental causes and consequences that have been known since the beginning of agriculture. The study intended to explore the implications and drivers of LULCC in the Ethiopian rift valley region of Gidabo river sub basin from 1986 to 2019. The researchers have triangulated the data from Landsat 5 (™), and Landsat 8 (OLI) with data obtained from key informants, focus groups and field observation, which is helpful to determine the interaction between the environment and the community. It is also important to mitigate environmental disaster (erosion, landslides, and climate change) and sustainable utilization of natural resources. The LULCC of the past 33 years implied that about 58.4 % of the area was changed to other Land use land cover (LULC) classes. This refers to the fact that about 14% of agroforestry, 2% of the settlement, 1.1% of the forest, and 1% of bare land were expanded at the expense of 10.3% of shrub/woodland, 6.3 % of grassland, and 1% of cropland classes. Therefore, as a result, the highest land cover (46.7%) was observed on the agroforestry system. Participants in group discussion and informant interviews attributed the expansion of agroforestry to the drivers, such as population density, cultural values (Songo, Babbo), traditional beliefs, land policy, and the insecurity resulting from climate change. Whereas, the drivers related to unproductive land, resettlement, urbanisation, and lack of agricultural inputs were considered as threats that will adversely affect the agroforestry system of the area. The study concluded that the high expansion of the agroforestry system has significant contribution to achieve a resilient environment and sustainable development, which integrates the socio-economic and environmental needs of the community. But greater attention should be given to the changes observed in shrub/woodland, grassland, and bare land to enhance environmental protection.

Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2020 ◽  
Author(s):  
Huilan Zhang

<p>Climate change and various human activities have resulted in noticeable changes in watershed hydrological and soil erosion regimes. In this study, a comprehensive investigation was conducted to distinguish between the effects of climate variables and those of land use and land cover change (LUCC) variables on runoff and sediment discharge in a watershed located at upper reaches of the Yangtze River. Statistical analysis results revealed significant and slight increasing trends in runoff and sediment discharge, respectively. Abrupt changes occurred in 1974 and 1995, which divided the entire time series into a decrease–increase–decrease tendency pattern; this pattern was the response to climate changes and the Reforestation and Returning Farmland to Forest project in China. In addition, redundancy analysis was used for partition statistical analyses, and the contributions of climate change and LUCC to runoff and sediment discharge were at the ratio of 4:1. Since 1990, the effect of LUCC has increased notably and its relationship with hydrological variables changed from positive to negative in approximately 1995. Finally, simulations performed using the distributed Basic Pollution Calculation Center (BPCC) model confirmed that climate and LUCC variables reduced the runoff depth and sediment load between 1980 and 2003. The contributions of climate fluctuation and LUCC to runoff depth were at the ratio of 5:1, and those to sediment load were at the ratio of 3:1, which exhibited the dominant role of climate change and the high sensitivity of sediment load to human interference. Overall, the results of distributed hydrological modeling were consistent with those of statistical analyses. The results provided detailed information and explained the mechanics underlying hydrological processes and soil erosion.</p><p> </p>


2012 ◽  
Vol 7 (3) ◽  
pp. 239-260 ◽  
Author(s):  
Daniel Ayalew Mengistu ◽  
Daniel Kassahun Waktola ◽  
Muluneh Woldetsadik

2008 ◽  
Vol 8 (1) ◽  
pp. 3843-3893 ◽  
Author(s):  
A. Ito ◽  
J. E. Penner ◽  
M. J. Prather ◽  
C. P. de Campos ◽  
R. A. Houghton ◽  
...  

Abstract. The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.


Author(s):  
H. Bilyaminu ◽  
P. Radhakrishnan ◽  
K. Vidyasagaran ◽  
K. Srinivasan

Understanding forest degradation due to human and natural phenomena is crucial to conserving and managing remnant forest resources. However, forest ecosystem assessment over a large and remote area is usually complex and arduous. The present study on land use and land cover change detection of the Shendurney Wildlife Sanctuary forest ecosystems was carried out to utilize the potential application of remote sensing (RS) and geographic information system (GIS). Moreover, to understand the trend in the forest ecosystem changes. The supervised classification with Maximum Likelihood Algorithm and change detection comparison approach was employed to study the land use and land cover changes, using the Landsat Enhanced Thematic Mapper (ETM±) and Landsat 8 OLI-TIRS using data captured on July 01, 2001, and January 14, 2018. The study indicated the rigorous land cover changes. It showed a significant increase in the proportion of degraded forest with negligible gain in the proportion of evergreen forest from 21.31% in 2001 to 22.97% in 2018.  A substantial loss was also observed in moist deciduous from 27.11 % in 2001 to 17.23 % in 2018. The result of the current study indicated the degree of impacts on forests from the various activities of their surroundings. This study provides baseline information for planning and sustainable management decisions.


Sign in / Sign up

Export Citation Format

Share Document