Impacts of Land-Use/Land-Cover Change and Climate Change on the Regional Climate in the Central Vietnam

Author(s):  
Patrick Laux ◽  
Phuong Ngoc Bich Nguyen ◽  
Johannes Cullmann ◽  
Harald Kunstmann
2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1801 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.


2020 ◽  
Vol 2 ◽  
Author(s):  
Tesfaye Dessu ◽  
Diriba Korecha ◽  
Debela Hunde ◽  
Adefires Worku

Long-term urban land use land cover change (LULCC) dynamics and climate change trends in Southwest Ethiopia's four urban centers were examined for 60 years. Remote sensing, aerial photos, and Landsat, temperature, and rainfall data were analyzed from a climate change perspective over the Jimma, Bedelle, Bonga, and Sokorru urban centers of southwest Ethiopia from 1953 to 2018. Based on geospatial analysis and maximum likelihood supervised image classification techniques to classify LULCC categories, the Mann-Kendall test was applied to perform trend analyses on temperature and rainfall. The LULCC analysis revealed that built-up areas over the urban centers had shown an increasing trend, with the highest increment by 2,360 hectares over Jimma, while vegetation, wetland, and cropland declined due to conversion of plain lands to built-up areas and other similar zones. The pronounced decline of vegetation coverage was 1,427, 185,116, and 32 hectares in Jimma, Bedelle, Bonga, and Sokorru, respectively. Mann-Kendall test results showed a significant sign of intra-seasonal and inter-annual variability of rainfall while the summer and annual rainfall patterns remained less variable compared to other seasons. This study's findings revealed that when the mean between the two climatic normals of 1953–86 is compared with 1987–2018, the temperature has significantly increased in the latter three decades. The rapid expansion of built-up areas coupled with a sharp decline of green space or vegetation and agricultural/croplands could lead to gradual changes in LULCC classes, which have contributed to the changing of the local climate, especially the surface temperature and rainfall over the urban centers of southwest Ethiopia. Therefore, we recommend that the local urban administrations emphasize sustainable urban development by integrating urban planning policies with land use to protect the environment by adopting local municipal adaptation and national climate change strategies. Restoration of the local environment and creation of climate-smart cities could be critical to the resilience of urban dwellers and ecosystems to the changing climate by enhancing grass-root climate services. To that end, we recommend further advanced research to understand how urban LULC-related changes and other factors contribute to local and regional climates, as urban areas of Southwest Ethiopia are undergoing a rapid transformation of their rural surroundings.


2022 ◽  
Author(s):  
TC Chakraborty ◽  
Yun Qian

Abstract Although the influence of land use/land cover change on climate has become increasingly apparent, cities and other built-up areas are usually ignored when estimating large-scale historical climate change or for future projections since cities cover a small fraction of the terrestrial land surface1,2. As such, ground-based observations of urban near-surface meteorology are rare and most earth system models do not represent historical or future urban land cover3–7. Here, by combining global satellite observations of land surface temperature with historical estimates of built-up area, we demonstrate that the urban temperature signal on continental- to regional-scale warming has become non-negligible, especially for rapidly urbanizing regions in Asia. Consequently, expected urban expansion over the next century suggest further increased urban influence on surface climate under all future climate scenarios. Based on these results, we argue that, in line with other forms of land use/land cover change, urbanization should be explicitly included in future climate change assessments. This would require extensive model development to incorporate urban extent and biophysics in current-generation earth system models to quantify potential urban feedbacks on the climate system at multiple scales.


2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Thy T. M. Pham ◽  
The-Duoc Nguyen ◽  
Han T. N. Tham ◽  
Thi N. K. Truong ◽  
Nguyen Lam-Dao ◽  
...  

2017 ◽  
Vol 64 ◽  
pp. 317-326 ◽  
Author(s):  
Laura Gómez-Aíza ◽  
Andrea Martínez-Ballesté ◽  
Leonel Álvarez-Balderas ◽  
Alicia Lombardero-Goldaracena ◽  
Paola M. García-Meneses ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeideh Maleki ◽  
Vahid Rahdari ◽  
Nicolas Baghdadi

AbstractThe present paper aims to quantify how human-made changes in the upstream exacerbate climate change impacts on water birds’ habitat in the downstream. To reduce climate change effects and design adaptation policies, it is important to identify whether human activities understate or overstate the effects of climate change in a region on its inhabitants. This paper also shows how human activities may magnify climate change impacts both locally and regionally. Land-use/land-cover change as the important sign of human-made destruction in an ecosystem was detected in the upstream of the Helmand basin over 40 years. Owing to conflicts in Afghanistan, studies on this basin are rare. The water bird’s habitat suitability maps during the study period were created using the maximum entropy model and the multi-criteria evaluation method. The post-classification method was applied to show the land-use/land-cover change over 40 years. These results were compared to the area of suitable habitat for water birds. The findings of these analyses indicated that the irrigated farming was expanded in the upstream despite climate change and water limitation, while the water birds’ habitat in the downstream was declined. These results revealed that the unsustainable pattern of farming and blocking water behind dams in the upstream exacerbated the negative effects of climate change on water birds’ habitat in the downstream. The significance of this study is to demonstrate the role of human in exacerbating climate change impacts both locally and regionally.


Sign in / Sign up

Export Citation Format

Share Document