scholarly journals Effect of Polysorbates on the Growth of Rhodotorula Glutinis in Oil Rich Medium

2021 ◽  
Vol 25 (1) ◽  
pp. 1075-1085
Author(s):  
Svetlana Raita ◽  
Kriss Spalvins ◽  
Evalds Raits ◽  
Inese Silicka ◽  
Dagnija Blumberga

Abstract The present study has investigated the effect of oil rich medium supplementation with polysorbates Tween 20, 40 and 80, for the cultivation of red oleaginous yeast Rhodotorula glutinis. R. glutinis has been cultivated in yeast extract peptone glucose modified broth (mYPG) supplemented with 2 % of waste cooking rapeseed oil and three polysorbate types with 0.5 %, 1 %, 2%, 3 %, 4 %, 5 %, 6 %, 7 %, 8 %, 9 % and 10 % concentration each. Yeast biomass was measured by the thermogravimetric method at 105 °C each day during 7-day experiment. The oil rich medium supplementation with Tween 20, 40 and 80 at concentrations ranging from 2 % to 10 % significantly increased the biomass of R. glutinis. All three types of the studied polysorbates with 0.5 % and 1 % concentration, did not affect yeast growth and the dry biomass – results were similar to the control sample without polysorbate addition. Between the three types of polysorbates, Tween 20 was selected as the preferable for R. glutinis cultivation with an optimal concentration of 2 %. Cultivation of R. glutinis in oil rich medium with polysorbates Tween 20, 40 and 80, supplementation up to 10 % concentration did not have had an inhibitory effect on the biomass growth.

2007 ◽  
Vol 6 (18) ◽  
pp. 2130-2134 ◽  
Author(s):  
Dai Chuan chao ◽  
Tao Jie ◽  
Xie Feng ◽  
Dai Yi jun ◽  
Zhao Mo

2020 ◽  
Vol 22 (23) ◽  
pp. 8478-8494
Author(s):  
Cassamo U. Mussagy ◽  
Valéria C. Santos-Ebinuma ◽  
Kiki A. Kurnia ◽  
Ana C. R. V. Dias ◽  
Pedro Carvalho ◽  
...  

Mixed biosolvents as a promising and environmentally benign solution for the recovery of carotenoids and lipids from yeast biomass.


2020 ◽  
Vol 38 (No. 3) ◽  
pp. 144-150
Author(s):  
Krzysztof Kucharczyk ◽  
Tadeusz Tuszyński ◽  
Krzysztof Żyła ◽  
Czesław Puchalski

The aim of the study was to determine the effect of yeast generations on fermentation and maturation processes, the content of volatile compounds of beer and viability and vitality of yeast biomass on an industrial scale. The experiments with fermentation and maturation were performed in fermentation tanks. The wort was aerated with sterile air. Yeast (S. pastorianus) bottom fermentation was used in fermentation. For pitching four generations (passages) of yeast were used as follows: 1st, 2nd, 3rd and 4th generation. The processes of fermentation and maturation were carried out in the same technological conditions (temperature and pressure). During fermentation and maturation, the changes in the content of the extract, yeast growth and vitality and selected volatile compounds like esters, alcohols and carbonyl compounds were investigated. With the increase in the number of yeast generations, especially from the 2nd generation used in the fermentation process, the content of acetaldehyde and esters increased. Despite the slight differences between generations, the changes are statistically significant. The content of diacetyl is stable for the 1st, 2nd and 3rd generation and higher for the 4th generation. Diversified yeast generations used in the process of fermentation did not affect significantly the final quality of beer.


2020 ◽  
Vol 313 ◽  
pp. 123666 ◽  
Author(s):  
Morteza Hassanpour ◽  
Mahsa Abbasabadi ◽  
James Strong ◽  
Leigh Gebbie ◽  
Valentino Setoa Junior Te'o ◽  
...  

2017 ◽  
Vol 753 ◽  
pp. 259-263
Author(s):  
Atsdawut Areesirisuk ◽  
Chiu Hsia Chiu ◽  
Tsair Bor Yen ◽  
Jia Hsin Guo

In this study, intracellular lipids of a novel oleaginous biomass of P. parantarctica were converted to biodiesel directly using simple acid catalyst methanolysis. The optimum condition of this method was investigated. Under optimum conditions (0.1 M H2SO4, 10 h reaction time, 65°C reaction temperature, and 1:20 (w/v) biomass-to-methanol ratio), the yield of crude biodiesel was 93.18 ± 2.09% based on total cellular lipids. The composition of crude biodiesel was C16:C18 fatty acid methyl esters (FAMEs) for 91.91%. Especially, the C18:1 methyl ester was the main FAME (47.10%). In addition, the result showed that this technique could produce the microbial biodiesel from biomass containing high free fatty acids (FFAs) without soap formation. The predicted cetane number and kinematic viscosity of biodiesel were characterized according to ASTM D6751 and EN 14214 standards. Our results indicated that this process produces a good quality biodiesel. Moreover, it can decrease the manufacturing costs of microbial biodiesel production from oleaginous yeast biomass without cell disruption and lipid extraction.


1998 ◽  
Vol 3 (1) ◽  
pp. 7-15 ◽  
Author(s):  
OANA-ARINA ANTOCE ◽  
VASILE ANTOCE ◽  
NICOLAI POMOHACI ◽  
ION NAMOLOSANU ◽  
KATSUTADA TAKAHASHI

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
D. Paul ◽  
Z. Magbanua ◽  
M. Arick ◽  
T. French ◽  
S. M. Bridges ◽  
...  

Author(s):  
Ortansa Csutak ◽  
Viorica Corbu ◽  
Ileana Stoica ◽  
Tatiana Vassu

AbstractFatty acids represent important substrates for obtaining microbial lipases and biosurfactants. The yeast strain CMGBRG5 was identified as Rhodotorula glutinis using the BIOLOG MicroLog System. The opacity screening tests showed that R. glutinis CMGB-RG5 was able to produce lipases in presence of 1% Tween 80 after three days of incubation. Lipase induction was estimated as cell growth in presence of Tween 80, Tween 20, olive oil and tributyrin. After 48 hours, best results were obtained in presence of butyric acid, respectively, oleic acid: 2.2 × 107cells/ml on tributyrin and 1.0 × 107cells/ml on olive oil. Biosurfactant production was evaluated as emulsification index (E24%). After one week, high E24 values were obtained on fried sunflower oil (53%) and olive oil (35%). Crude and concentrated biosurfactants were tested against nine Candida strains. Best antimicrobial activity was observed for [20X] biosurfactants against C. tropicalis, C. guilliermondii and C. krusei. In conclusion, R. glutinis CGB-RG5 shows high potential for using fatty acids from various sources as unique carbon substrates for synthesis of biocompounds with high economic and biotechnological value.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 656-660 ◽  
Author(s):  
Atsushi Kono ◽  
Akihiko Sato ◽  
Bruce Reisch ◽  
Lance Cadle-Davidson

Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berlese & de Toni, is a major disease, especially in humid viticultural areas. Development of resistant cultivars is an important objective for grapevine breeding. To establish a reliable and inexpensive quantitative method to aid in breeding for DM resistance, we improved the method for counting the number of sporangia on leaf discs, and developed a method for counting the number of sporangia in solution. To prevent the loss of DM sporangia from adhesion onto plastic ware, we found as little as 0.01% Tween 20 was effective. On the other hand, this detergent was shown to have a severe inhibitory effect upon DM infection of leaves. We developed a sporangia counting method using dried droplets of DM suspensions, and the method was highly correlated with counting by hemacytometer (R2 > 0.96). The nonparametric Spearman’s rank correlations between visual rating and the number of the sporangia were as high as ρ = 0.82 to 0.91, suggesting that evaluation by the visual rating could provide a good estimate of the sporangia numbers on leaf discs. We established a high-throughput and inexpensive method with acceptable accuracy for DM resistance evaluation based on a leaf disc assay, and our results suggested that visual ratings of infected leaf discs provide a good estimate of sporangia numbers.


Sign in / Sign up

Export Citation Format

Share Document