scholarly journals Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties

2013 ◽  
Vol 11 (5) ◽  
pp. 763-773 ◽  
Author(s):  
Lu Pan ◽  
Jing Tang ◽  
Fengwu Wang

AbstractA facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.

1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.


2001 ◽  
Vol 16 (10) ◽  
pp. 2805-2809 ◽  
Author(s):  
Yang Jiang ◽  
Yue Wu ◽  
Shengwen Yuan ◽  
Bo Xie ◽  
Shuyuan Zhang ◽  
...  

A simple and convenient solvothermal reaction has been developed to produce CuInS2 nanorods and nanotubes from the elements in ethylenediamine at 280 °C. The products were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. Analysis shows that the coordinating ability of ethylenediamine and the existence of liquid In may play important roles in the growth of one-dimension nanocrystallites and the electron-transfer reaction. In addition, spherical CuInS2 micrometer particles were obtained at 350 °C.


2011 ◽  
Vol 236-238 ◽  
pp. 2000-2003
Author(s):  
Yong Cai Zhang ◽  
En Ren Zhang

Ultrafine CeO2 nanoparticles were synthesized directly via solvothermal treatment of Ce(NO3)3·6H2O powder in toluene at 180 °C for 48 h, and characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and UV-vis absorption spectrum. The results from XRD, Raman and XPS revealed the formation of pure cubic phase CeO2 with some oxygen vacancies. The TEM image disclosed that the as-synthesized CeO2 comprised nanoparticles of about 5–8 nm. The UV-vis absorption spectrum showed that the as-synthesized CeO2 nanoparticles had a wide UV absorption band centered at around 326 nm (3.8 eV).


2017 ◽  
Vol 727 ◽  
pp. 395-402
Author(s):  
Zi Run Wang ◽  
Xin Liu ◽  
Gui Qi Xie ◽  
Yi Wu ◽  
Ming Nie ◽  
...  

Cu-Ag alloy nanoparticles were synthesized by a liquid phase reduction method. Using sodium formaldehyde sulfoxylate (SFS) as reducing agents, copper-silver bimetallic nanoleaflets with high content of Cu were prepared. The obtained Cu-Ag bimetallic nanocrystal were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscope (FESEM), high resolution transmission electron microscopy (HRTEM) and transmission electron microscopy (TEM). Different molar ratio of Cu-Ag bimetallic nanomaterials could produce different morphologies. The surfactant β-CD plays a crucial role on the structure of the products. The different molar ratios of Cu-Ag were also investigated. The electrochemical activity was evaluated using cyclic voltammetry (CV), electrochemical hydrogen evolution reaction (HER) in a 0.5M Na2SO4 electrolyte.


NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350062 ◽  
Author(s):  
SHIYONG BAO ◽  
HAN ZHU ◽  
PAN WANG ◽  
MEILING ZOU ◽  
MINGLIANG DU ◽  
...  

A facile and green route was introduced to synthesize Pt nanoparticles (PtNPs) immobilized on Cu 2 O octahedrons to form Cu 2 O – Pt hierarchical heterostructure. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were employed to study their morphology, chemical and crystallographic properties of the Cu 2 O – Pt hierarchical heterostructure. These novel Cu 2 O – Pt hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the efficient ability to capture the light.


2012 ◽  
Vol 557-559 ◽  
pp. 489-492
Author(s):  
Zhi Xin Chen ◽  
Ya Zhen Ye ◽  
Han Jie Huang ◽  
Guang Can Xiao ◽  
Yun Hui He

The tetragonal phase CuInS2 nanoparticles were synthesized by the reaction of Cu(Ac)2, InCl3·4H2O and thioacetamide by hydrothermal method at 200 °C for 6 h in pH 1. The products were characterized by X-ray diffraction, energy-dispersive X-ray spectrum, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Experimental results indicate that reaction temperature and the pH of solution are the important factors in the formation of CuInS2. The SEM and TEM results illuminated that the CuInS2 was composed of so many nanoparticles.


2014 ◽  
Vol 1004-1005 ◽  
pp. 63-68 ◽  
Author(s):  
Zhao Deng ◽  
Ying Dai ◽  
Hua Xiao ◽  
Meng Jun Zhou

Size controllable Barium titanate nanoparticles were synthesized in microemulsion consisting of water, OP-10, hexanol and cyclohexane under atmospheric pressure and low temperature, with Ba (OH)2·8H2O and tetrabutyl titanate used as starting reactants. Products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The results show that 65°C is the proper temperature for the synthesis. The particle size can be controlled by varying the reactants’ concentration, ω value (molar ratios of water to surfactant) and aging time.


Sign in / Sign up

Export Citation Format

Share Document