scholarly journals Spectroscopic analysis of pindolol irradiated in the solid state

2014 ◽  
Vol 12 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Magdalena Ogrodowczyk ◽  
Barbara Marciniec ◽  
Piotr Kachlicki

AbstractPindolol ((2RS)-(1-(1H-indol-4-iloxy)-3- [(1-metyloetylo)amino]-2-propanol) in substantia was exposed to ionising radiation emitted by high energy electrons from an accelerator, in the standard sterilisation dose of 25 kGy and in higher doses from the range 50–400 kGy. The effects of irradiation were checked by spectrometric methods (UV, MS, FT-IR, EPR) and hyphenated methods (HPLC-MS) and the results were referred to those obtained for non-irradiated sample. EPR results indicated the presence of free radicals in irradiated samples, in the amount of 1.36 × 1016 spin g−1 for 25 kGy and 3.70×1016 spin g−1 for 400 kGy. The loss of pindolol content determined by HPLC was 1.34% after irradiation with 400 kGy, while the radiolytic yield of the total radiolysis for this dose of irradiation was 2.69×107 mol J−1. By means of HPLC-MS it was possible to separate and identify one product of radiolytic decomposition, which probably is 2-((R)-3-(1H-indol-4-yloxy)-2-hydroxypropylamino)propan-1-ol formed upon oxidation. In the range of sterilisation doses (25–50 kGy), pindolol was found to show high radiochemical stability and would probably be safely sterilised by the standard dose of 25 kGy.

1956 ◽  
Vol 19 (93) ◽  
pp. 455-458 ◽  
Author(s):  
E. J. Lawton ◽  
W. T. Grubb ◽  
J. S. Balwit

2015 ◽  
Vol 98 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Magdalena Ogrodowczyk ◽  
Katarzyna Dettlaff ◽  
Piotr Kachlicki ◽  
Barbara Marciniec

Abstract Two therapeutically active compounds from the group of β-blockers, acebutolol (AC) and alprenolol (AL), in solid form were subjected to ionizing radiation emitted by a beam of high energy electrons from an accelerator with a standard sterilization dose of 25 kGy and in higher doses of 50–400 kGy. The effects of irradiation were detected by chromatographic methods (TLC, HPLC) and a hyphenated method (HPLC/MS/MS). No significant changes in the physicochemical properties of both compounds studied irradiated with 25 kGy were noted, but upon irradiation with the highest dose (400 kGy) the loss of AC and AL content determined by HPLC was 2.79 and 9.12%, respectively. The product of AC decomposition and the two products of AL decomposition were separated and identified by HPLC/MS/MS. It has been established that radiodegradation of AC and AL takes place by oxidation, leading to formation of the products of radiolysis, most probably alcohol derivatives of the β-blockers studied. The additional product that appears on radiodegradation of AL is probably formed as a result of two simultaneous reactions: oxidation and CH2 group elimination.


1956 ◽  
Vol 20 (96) ◽  
pp. 578-578
Author(s):  
E. J. Lawton ◽  
W. T. Grubb ◽  
J. S. Balwit

2008 ◽  
Vol 25 (No. 5) ◽  
pp. 231-242 ◽  
Author(s):  
J. Sádecká

Food irradiation is a process of exposing food to ionising radiation such as gamma rays emitted from the radioisotopes 60Co and 137Cs, or high energy electrons and X-rays produced by machine sources. The use of ionising radiation to destroy harmful biological organisms in food is considered a safe, well proven process that has found many applications. Depending on the absorbed dose of radiation, various effects can be achieved resulting in reduced storage losses, extended shelf life and/or improved microbiological and parasitological safety of foods. The most common irradiated commercial products are spices and vegetable seasonings. Spice irradiation is increasingly recognised as a method that reduces post-harvest losses, ensures hygienic quality, and facilitates trade with food products. This article reviews recent activities concerning food irradiation, focusing on the irradiation of spices and dried vegetable seasonings from the food safety aspect.


Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


Sign in / Sign up

Export Citation Format

Share Document