scholarly journals Hepatitis C virus entry into the hepatocyte

2011 ◽  
Vol 6 (6) ◽  
pp. 933-945 ◽  
Author(s):  
Sandrine Belouzard ◽  
Laurence Cocquerel ◽  
Jean Dubuisson

AbstractHepatitis C virus (HCV) is a small enveloped virus with a positive stranded RNA genome belonging to the Flaviviridae family. The virion has the unique ability of forming a complex with lipoproteins, which is known as the lipoviroparticle. Lipoprotein components as well as the envelope proteins, E1 and E2, play a key role in virus entry into the hepatocyte. HCV entry is a complex multistep process involving sequential interactions with several cell surface proteins. The virus relies on glycosaminoglycans and possibly the low-density lipoprotein receptors to attach to cells. Furthermore, four specific entry factors are involved in the following steps which lead to virus internalization and fusion in early endosomes. These molecules are the scavenger receptor SRB1, tetraspanin CD81 and two tight junction proteins, Claudin-1 and Occludin. Although they are essential to HCV entry, the precise role of these molecules is not completely understood. Finally, hepatocytes are highly polarized cells and which likely affects the entry process. Our current knowledge on HCV entry is summarized in this review.

2009 ◽  
Vol 423 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Marie Perrault ◽  
Eve-Isabelle Pécheur

Twenty years after its discovery, HCV (hepatitis C virus) still infects 170 million people worldwide and cannot be properly treated due to the lack of efficient medication. Its life cycle must be better understood to develop targeted pharmacological arsenals. HCV is an enveloped virus bearing two surface glycoproteins, E1 and E2. It only infects humans through blood transmission, and hepatocytes are its only target cells. Hepatic trabeculae are formed by hepatocyte rows surrounded by sinusoid capillaries, irrigating hepatic cells. Hepatocytes are polarized and have basolateral and apical poles, separated by tight junctions in contact with blood and bile respectively. In blood, HCV remains in contact with lipoproteins. It then navigates through hepatic microenvironment and extracellular matrix, composed of glycosaminoglycans and proteins. HCV then encounters the hepatocyte basolateral membrane, where it interacts with its entry factors: the low-density lipoprotein receptor, CD81 tetraspanin, and the high-density lipoprotein (scavenger) receptor SR-BI (scavenger receptor BI). How these molecules interact with HCV remains unclear; however, a tentative sequence of events has been proposed. Two essential factors of HCV entry are the tight junction proteins claudin-1 and occludin. Cell polarity therefore seems to be a key for HCV entry. This raises several exciting questions on the HCV internalization pathway. Clathrin-dependent endocytosis is probably the route of HCV transport to intracellular compartments, and the ultimate step of its entry is fusion, which probably takes place within endosomes. The mechanisms of HCV membrane fusion are still unclear, notably the nature of the fusion proteins is unknown and the contribution of HCV-associated lipoproteins to this event is currently under investigation.


2006 ◽  
Vol 87 (5) ◽  
pp. 1075-1084 ◽  
Author(s):  
Laurence Cocquerel ◽  
Cécile Voisset ◽  
Jean Dubuisson

Several cellular molecules have been identified as putative receptors for Hepatitis C virus (HCV): CD81 tetraspanin, scavenger receptor class B type I (SR-BI), mannose-binding lectins DC-SIGN and L-SIGN, low-density lipoprotein receptor, heparan sulphate proteoglycans and the asialoglycoprotein receptor. Due to difficulties in propagating HCV in cell culture, most of these molecules have been identified by analysing their interaction with a soluble, truncated form of HCV glycoprotein E2. A recent major step in investigating HCV entry was the development of pseudoparticles (HCVpp), consisting of unmodified HCV envelope glycoproteins assembled onto retroviral core particles. This system has allowed the investigation of the role of candidate receptors in the early steps of the HCV life cycle and the data obtained can now be confirmed with the help of a newly developed cell-culture system that allows efficient amplification of HCV (HCVcc). Interestingly, CD81 and SR-BI have been shown to play direct roles in HCVpp and/or HCVcc entry. However, co-expression of CD81 and SR-BI in non-hepatic cell lines does not lead to HCVpp entry, indicating that other molecule(s), expressed only in hepatic cells, are necessary for HCV entry. In this review, the molecules that have been proposed as potential HCV receptors are described and the experimental data indicating that CD81 and SR-BI are potentially involved in HCV entry are presented.


Hepatology ◽  
2013 ◽  
Vol 57 (5) ◽  
pp. 1716-1724 ◽  
Author(s):  
Sandra Westhaus ◽  
Dorothea Bankwitz ◽  
Stefanie Ernst ◽  
Katrin Rohrmann ◽  
Ilka Wappler ◽  
...  

2010 ◽  
Vol 84 (22) ◽  
pp. 12048-12057 ◽  
Author(s):  
Takayuki Hishiki ◽  
Yuko Shimizu ◽  
Reiri Tobita ◽  
Kazuo Sugiyama ◽  
Kazuya Ogawa ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.


2002 ◽  
Vol 76 (14) ◽  
pp. 6919-6928 ◽  
Author(s):  
P. André ◽  
F. Komurian-Pradel ◽  
S. Deforges ◽  
M. Perret ◽  
J. L. Berland ◽  
...  

ABSTRACT The presence of hepatitis C virus (HCV) RNA-containing particles in the low-density fractions of plasma has been associated with high infectivity. However, the nature of circulating HCV particles and their association with immunoglobulins or lipoproteins as well as the characterization of cell entry have all been subject to conflicting reports. For a better analysis of HCV RNA-containing particles, we quantified HCV RNA in the low-density fractions of plasma corresponding to the very-low-density lipoprotein (VLDL), intermediate-density lipoprotein, and low-density lipoprotein (LDL) fractions from untreated chronically HCV-infected patients. HCV RNA was always found in at least one of these fractions and represented 8 to 95% of the total plasma HCV RNA. Surprisingly, immunoglobulins G and M were also found in the low-density fractions and could be used to purify the HCV RNA-containing particles (lipo-viro-particles [LVP]). Purified LVP were rich in triglycerides; contained at least apolipoprotein B, HCV RNA, and core protein; and appeared as large spherical particles with a diameter of more than 100 nm and with internal structures. Delipidation of these particles resulted in capsid-like structures recognized by anti-HCV core protein antibody. Purified LVP efficiently bind and enter hepatocyte cell lines, while serum or whole-density fractions do not. Binding of these particles was competed out by VLDL and LDL from noninfected donors and was blocked by anti-apolipoprotein B and E antibodies, whereas upregulation of the LDL receptor increased their internalization. These results suggest that the infectivity of LVP is mediated by endogenous proteins rather than by viral components providing a mechanism of escape from the humoral immune response.


2018 ◽  
Vol 23 (2) ◽  
pp. 50-53 ◽  
Author(s):  
Claudia C Dobler ◽  
Rebecca L Morgan ◽  
Yngve Falck-Ytter ◽  
Victor M Montori ◽  
M Hassan Murad

Surrogate endpoints are often used in clinical trials, as they allow for indirect measures of outcomes (eg, shorter trials with less participants). Improvements in surrogate endpoints (eg, reduction in low density lipoprotein cholesterol, normalisation of glycated haemoglobin) achieved with an intervention are, however, not always associated with improvements in patient-important outcomes. The common tendency in evidence-based medicine is to view results based on surrogate endpoints as less certain than results based on long term, final patient-important outcomes and rate them as ‘lower quality evidence’. However, careful appraisal of the validity of a surrogate endpoint as a measure of the final, patient-important outcome is more useful than an automatic judgement. In this guide, we use a contemporary and currently highly debated example of the surrogate endpoint ‘sustained viral response’ (ie, viral eradication considered to represent successful treatment) in patients treated for chronic hepatitis C virus. We demonstrate how the validity of a surrogate endpoint can be critically appraised to assess the quality of the evidence (ie, the certainty in estimates) and the implications for decision-making.


Sign in / Sign up

Export Citation Format

Share Document