scholarly journals In Vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs

Author(s):  
Blase Billack ◽  
Vijayalaxmi Radkar ◽  
Christelle Adiabouah

AbstractResveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan ∼ 1.3 μM) and to TPS (LC50 trypan ∼ 4.0 μM and LC50 MTT ∼ 8.3 μM) than to RES (LC50 trypan ∼ 8.9 μM and LC50 MTT ∼ 29.0 μM), they were relatively resistant to TSO (LC50 trypan ∼ 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuting Meng ◽  
Xixi Qian ◽  
Li Zhao ◽  
Nan Li ◽  
Shengjie Wu ◽  
...  

Abstract Background The third-generation epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown significant therapeutic effects on patients with non-small cell lung carcinoma (NSCLC) who carry active EGFR mutations, as well as those who have developed acquired resistance to the first-generation of EGFR-TKIs due to the T790M mutation. However, most patients develop drug resistance after 8–10 months of treatment. Currently, the mechanism has not been well clarified, and new therapeutic strategies are urgently needed. Methods Osimertinib resistant cell lines were established by culturing sensitive cells in chronically increasing doses of osimertinib. The anticancer effect of reagents was examined both in vitro and in vivo using the sulforhodamine B assay and a xenograft mouse model. The molecular signals were detected by western blotting. The combination effect was analyzed using CompuSyn software. Results We found that bromodomain and extra-terminal proteins (BETs) were upregulated in osimertinib resistant (H1975-OR) cells compared with those in the paired parental cells (H1975-P), and that knockdown of BETs significantly inhibited the growth of H1975-OR cells. The BET inhibitor JQ1 also exhibited stronger growth-inhibitory effects on H1975-OR cells and a greater expression of BETs and the downstream effector c-Myc than were observed in H1975-P cells. The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) showed stronger growth suppression in H1975-OR cells than in H1975-P cells, but vorinostat, another HDAC inhibitor, showed equal inhibitory efficacy in both cell types. Consistently, downregulation of BET and c-Myc expression was greater with TSA than with vorinostat. TSA restrained the growth of H1975-OR and H1975-P xenograft tumors. The combination of TSA and JQ1 showed synergistic growth-inhibitory effects in parallel with decreased BET and c-Myc expression in both H1975-OR and H1975-P cells and in xenograft nude mouse models. BETs were not upregulated in osimertinib resistant HCC827 cells compared with parental cells, while TSA and vorinostat exhibited equal inhibitory effects on both cell types. Conclusion Upregulation of BETs contributed to the osimertinib resistance of H1975 cells. TSA downregulated BET expression and enhanced the growth inhibitory effect of JQ1 both in vitro and in vivo. Our findings provided new strategies for the treatment of osimertinib resistance.


2003 ◽  
Vol 66 (13) ◽  
pp. 1221-1235 ◽  
Author(s):  
J. Naarala ◽  
J.-P. Kasanen ◽  
P. Pasanen ◽  
A.-L. Pasanen ◽  
A. Liimatainen ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Yosr BenRedjem Romdhane ◽  
Monia Elbour ◽  
Marianna Carbone ◽  
Maria Letizia Ciavatta ◽  
Margherita Gavagnin ◽  
...  

Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reportedin vitrobioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. Thein vitrogrowth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1297-1297 ◽  
Author(s):  
Joanna Zabkiewicz ◽  
Marie Gilmour ◽  
Robert K. Hills ◽  
Elizabeth Bone ◽  
Alan Davidson ◽  
...  

Abstract Tefinostat (CHR-2845) is a novel monocyte/macrophage-targeted histone deacetylase inhibitor (HDACi) that is cleaved to an active acid, CHR-2847, by an intracellular esterase (human carboxylesterase-1, hCE-1), found only in cells of monocytoid lineage and hepatocytes. The clinical uptake of HDAC inhibition to date has been restricted by systemic toxicities including gastrointestinal disturbance, thrombocytopenia and fatigue. Accumulation of CHR-2847 in hCE-1-expressing cells results in a 20-100-fold increase in targeted anti-proliferative potency, considerably widening the potential therapeutic window in malignancies involving cells of monocytoid lineage (AML-M4, AML-M5 and CMML) by sparing the systemic toxicological effects associated with non-selective HDAC inhibition. The in vitro efficacy of tefinostat was assessed in primary AMLs using stored mononuclear cells obtained at diagnosis from 70 AML patients. Dose-dependent induction of apoptosis and significant growth inhibitory effects were seen in M4 /M5 AMLs (median IC50; 1.1µM+/-1.8) compared to non-M4/M5 FAB types (median IC50 5.1µM +/-4.7) (p=0.007). This potency and monocytoid specificity was not reproduced when using an alternative HDACi, tefinostat analogue CHR-8185 which is not cleaved by hCE-1. hCE-1 protein expression in patient samples was measured by both intracellular flow cytometry and immunoblotting, with highest levels seen in M4/M5 patients. This observation was validated by microarray analysis of hCE-1 mRNA in a further 130 AML samples with M4/M5 AMLs showing significant overexpression compared to normal bone marrow CD34+ cells (p=0.009). High levels of hCE-1 expression were found to drive a significant increase in tefinostat efficacy as measured by growth inhibition assays (p=0.001), and also strongly correlated with expression of the mature monocytoid marker CD14+. Sub-population analysis by flow cytometry revealed variable sensitivity to tefinostat within AML blasts, with CD14+ expressing cells showing maximum growth inhibition. This CD14+ response was accompanied by an induction of intracellular protein acetylation at nanomolar concentrations in tefinostat-responsive samples. Tefinostat-sensitive samples also showed strong induction of the cell cycle arrest and DNA damage sensor protein pH2AX, which is a potential biomarker of patient responsiveness. Importantly, no growth inhibitory effects were seen in normal bone marrow cells (n=5) exposed to AML-toxic doses of tefinostat while, in comparison, equivalent concentrations of the non-hCE-1-dependent analogue CHR-8185 caused considerable cytotoxicity, again emphasising the potential for expansion of the clinical therapeutic window using an hCE-1-dependent agent. In vitro synergy was demonstrated in combination experiments with tefinostat and cytarabine (median Combination Index value=0.68) which is likely to be a logical combination for future clinical evaluation. In summary, monocytoid targeting of HDACi activity was achieved using tefinostat in primary AML samples of monocytoid lineage, with minimal toxicity to normal bone marrow cells at equimolar concentrations. Given the absence of significant toxicity seen in a recently-published phase 1 study of tefinostat in patients with advanced haematological malignancies, further larger scale clinical evaluation of this compound is warranted in haematological malignancies involving cells of monocytoid lineage. Disclosures: Zabkiewicz: Chroma Therapeutics: Research Funding. Gilmour:Chroma Therapeutics: Research Funding. Hills:Chroma Therapeutics: Research Funding. Bone:Chroma Therapeutics: Employment. Davidson:Chroma Therapeutics: Employment. Burnett:Chroma Therapeutics: Research Funding. Knapper:Chroma Therapeutics: Research Funding.


2010 ◽  
Vol 38 (9) ◽  
pp. 744-755 ◽  
Author(s):  
Alexandra Böhm ◽  
Karoline Sonneck ◽  
Karoline V. Gleixner ◽  
Karina Schuch ◽  
Winfried F. Pickl ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Mohamed Haddad ◽  
Anne-Cécile Lelamer ◽  
Laetitia Moreno Y Banuls ◽  
Pedro Vasquez ◽  
Maelle Carraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document