dimethyl sulfone
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 1)

Author(s):  
Saif Ali Abdulhadi ◽  
Alona Tulskа ◽  
Volodymyr Bayrachnyi ◽  
Irina Valeriivna Sinkevich

Dimethyl sulfoxide is a feedstock for a large number of organic substances syntheses. Nowadays research is considerably focused on the production of general products of dimethyl sulfoxide oxidation – dimethyl sulfone and methane sulfonic acid. Dimethyl sulfone is well–known as a food supplement for the treating and strengthening of human joints and ligaments. dimethyl sulfone is basically synthesized by oxidation of dimethyl sulfoxide in hot 30 % hydrogen peroxide in glacial acetic acid. Synthesis is accompanied by significant losses of hydrogen peroxide, the target product has to be significantly purified. It becomes possible to control the synthesis of pure dimethyl sulfone and methane sulfonic acid when using the electrochemical method of oxidation of dimethyl sulfoxide in its aqueous solution with chemically resistant anode and high overvoltage of oxygen reaction Controlled synthesis is relevant because sulfur tends to change the oxidation rate. Study of kinetics of anodic processes at platinum electrode was performed in the dimethyl sulfoxide concentration range about 1.0…4.0 mol∙dm–3. Current raise was observed at potentials that are more positive than 1.3…1.4 V. This potential range corresponds to oxygen release. Dissolved sulfuric acid (0.2 mol∙dm–3) was added in order to inhibit the oxygen release and achieve the potential for the formation of peroxide radicals in aqueous solutions of dimethyl sulfoxide. It is known that sulfate ions are adsorbed on the surface of the platinum anode, displacing molecules of protonated water. This allows to shift the potentials and increase of the electrolysis current in 0.2 mol∙dm–3 H2SO4 to 1.7…1.9 V. It indicates the processes of formation of peroxide radicals on the surface of the platinum anode. Further shift of the anode potential into more positive area than 2.00…2.05 V leads to a rapid increase in current density. At such potentials, dimethyl sulfoxide and dimethyl sulfone are oxidized to methane sulfonic acid with a parallel oxygen and hydrogen peroxide release. Current–voltage study has shown that the oxidation of dimethyl sulfoxide in aqueous solutions runs through the formation of dimethyl sulfone. When conducting electrochemical synthesis with control of the anode potential, it is possible to produce dimethyl sulfone without further oxidation to methane sulfonic acid. The addition of 0.2 mol∙dm–3 H2SO4 to aqueous dimethyl sulfoxide solutions inhibits oxygen release and intensifies oxidation of dipole dimethyl sulfoxide molecules adsorbed on the platinum surface. The influence of adsorption processes on the kinetics of anode processes at the platinum anode in aqueous solutions of dimethyl sulfoxide at high anode potentials has been studied.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Jochen Ehrich ◽  
Laurence Dubourg ◽  
Sverker Hansson ◽  
Lars Pape ◽  
Tobias Steinle ◽  
...  

Evaluation of renal dysfunction includes estimation of glomerular filtration rate (eGFR) as the initial step and subsequent laboratory testing. We hypothesized that combined analysis of serum creatinine, myo-inositol, dimethyl sulfone, and valine would allow both assessment of renal dysfunction and precise GFR estimation. Bio-banked sera were analyzed using nuclear magnetic resonance spectroscopy (NMR). The metabolites were combined into a metabolite constellation (GFRNMR) using n = 95 training samples and tested in n = 189 independent samples. Tracer-measured GFR (mGFR) served as a reference. GFRNMR was compared to eGFR based on serum creatinine (eGFRCrea and eGFREKFC), cystatin C (eGFRCys-C), and their combination (eGFRCrea-Cys-C) when available. The renal biomarkers provided insights into individual renal and metabolic dysfunction profiles in selected mGFR-matched patients with otherwise homogenous clinical etiology. GFRNMR correlated better with mGFR (Pearson correlation coefficient r = 0.84 vs. 0.79 and 0.80). Overall percentages of eGFR values within 30% of mGFR for GFRNMR matched or exceeded those for eGFRCrea and eGFREKFC (81% vs. 64% and 74%), eGFRCys-C (81% vs. 72%), and eGFRCrea-Cys-C (81% vs. 81%). GFRNMR was independent of patients’ age and sex. The metabolite-based NMR approach combined metabolic characterization of renal dysfunction with precise GFR estimation in pediatric and adult patients in a single analytical step.


2020 ◽  
Vol 20 (10) ◽  
pp. 6081-6094
Author(s):  
Achim Edtbauer ◽  
Christof Stönner ◽  
Eva Y. Pfannerstill ◽  
Matias Berasategui ◽  
David Walter ◽  
...  

Abstract. We present the first ambient measurements of a new marine emission methane sulfonamide (MSAM: CH5NO2S), along with dimethyl sulfide (DMS) and dimethyl sulfone (DMSO2) over the Arabian Sea. Two shipborne transects (W → E, E → W) were made during the AQABA (Air Quality and Climate Change in the Arabian Basin) measurement campaign. Molar mixing ratios in picomole of species per mole of air (throughout this paper abbreviated as ppt) of DMS were in the range of 300–500 ppt during the first traverse of the Arabian Sea (first leg) and 100–300 ppt on the second leg. On the first leg DMSO2 was always below 40 ppt and MSAM was close to the limit of detection. During the second leg DMSO2 was between 40 and 120 ppt and MSAM was mostly in the range of 20–50 ppt with maximum values of 60 ppt. An analysis of HYSPLIT back trajectories combined with calculations of the exposure of these trajectories to underlying chlorophyll in the surface water revealed that most MSAM originates from the Somalia upwelling region, known for its high biological activity. MSAM emissions can be as high as one-third of DMS emissions over the upwelling region. This new marine emission is of particular interest as it contains both sulfur and nitrogen, making it potentially relevant to marine nutrient cycling and marine atmospheric particle formation.


2020 ◽  
Vol 302 ◽  
pp. 112448 ◽  
Author(s):  
Bo Lin ◽  
Shichao Du ◽  
Changyou Yu ◽  
Ningning Tian ◽  
Weiwei Tang

2020 ◽  
Vol 50 ◽  
Author(s):  
Yusuf Andriana ◽  
Tran Dang Xuan

ABSTRACT Tridax procumbens is an invasive weed with a strong allelopathic activity. In this study, the contribution of phenolic acids and dimethyl sulfone to the allelopathic effect of T. procumbens was evaluated against Raphanus sativus. Phenolic acids (benzoic, ellagic and ferulic), vanillin and dimethyl sulfone were identified and quantified from the strongest fraction of T. procumbens, in an allelopathic assay by high performance liquid chromatography and gas chromatography - mass spectrometry. The contribution of phenolic acids and dimethyl sulfone to the allelopathic effect of T. procumbens, expressed as a total activity, was evaluated by comparing the IC50 value to the concentration of each allelochemical, in a completely randomized design. The benzoic acid presented the strongest inhibitory effect (115 mg kg-1) and the highest contribution (0.483) to the allelopathic effect of T. procumbens, followed by vanillin, dimethyl sulfone and ferulic acid.


2020 ◽  
Vol 22 (6) ◽  
pp. 2069-2076
Author(s):  
Shen Cheng ◽  
Wei Wei ◽  
Xingyu Zhang ◽  
Hewei Yu ◽  
Mingming Huang ◽  
...  

Dimethyl sulfone (DMSN or MSM) was prepared via efficient oxidation of dimethyl sulfoxide and used and developed as an efficient, viscose, and recyclable solvent for ligand-free CuI-catalyzed Heck, Suzuki, and Sonogashira cross-coupling reactions.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
E. S. Beyer ◽  
M. F. Miller ◽  
T. H. Davis ◽  
J. F. Legako

ObjectivesUnderstanding functional connectivity after consuming meat can be essential to fully understanding consumer’s preferences and the connection to certain flavor compounds. The objective of this study was to determine differences in the functional brain connectivity of consumers after consuming grass-fed beef, grain-fed beef and chicken while determining the different chemical and volatile components that differentiate the treatments.Materials and MethodsGrass-fed strip steaks, Grain-fed strip steaks and chicken breasts were collected, aged 21 d and cut into 1×1-inch consumer steaks. Each steak was vacuum sealed with a random identification number and frozen at –20°C. 23 volunteered consumers evaluated each treatment randomly followed by a Blood Oxygen Level-Dependent (BOLD) fMRI scan. Each consumer received a resting state scan and three scans following each sample. The beef was cooked to a medium degree of doneness (71°C) and the chicken was cooked to a well-done degree of doneness (75°C), followed by a 1-min resting period. The consumers were asked to complete a sensory ballot for each sample to quantify tenderness, juiciness, flavor, overall liking and quality. Each attribute was evaluated on a 100mm line scale. The sensory ballot, volatile and fatty acid data were analyzed by ANOVA and multiple means comparison using SAS while the fMRI data were analyzed using FSL’s FEAT software.ResultsThe results indicated all treatments were equal for tenderness and flavor, but the chicken was the least juicy (P < 0.05) and the grain-fed steak was ranked higher for overall liking (P < 0.05) in comparison to chicken. Furthermore, based on an independent component analysis, there was a significant difference in the functional connectivity (P < 0.05) from the resting state scan to all three treatments within the insular, medial prefrontal cortex, and amygdala regions. Additionally, there were significant differences in connectivity (P < 0.05) between the insula and orbitofrontal cortex in grass-fed compared to grain-fed beef. These areas are involved in processing sensory characteristics related to smell and taste and tend to track differences in preferences and stimulus value. Also, the samples were evaluated for volatile compounds with GC–MS and fatty acids using the FAMES method. Chicken and grass-fed beef was found to have a higher concentration (P < 0.05) of dimethyl sulfone in comparison to grain-fed beef, while the grass-fed steaks possessed a higher concentration (P < 0.05) of toluene in comparison to grain-fed steaks, but not differing from chicken. Dimethyl sulfone and toluene have been tied to grass-fed beef and chicken flavor profiles (Tansawat et al., 2013).ConclusionThe results from the functional brain connectivity in the reward pathways and the chemical components of the different treatments indicated a trend for grain-fed beef to be the most different from grass-fed beef and chicken. Moreover, tying brain activity to the flavor and chemical components in meat can be vital in understanding consumer’s preferences not observed in behavior alone. Therefore, these results can provide a basis to determine the ability to track reactions within the functional connectivity in the brain and the chemical aspects of different steaks to determine and understand consumer’s preferences and the true value of beef and chicken.


Sign in / Sign up

Export Citation Format

Share Document