Estimation of soil erosion on cultivated fields on the hilly Meghalaya Plateau, North-East India

2011 ◽  
Vol 38 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Grzegorz Poręba ◽  
Paweł Prokop

Abstract The estimation of soil erosion rates in complex subtropical agricultural systems of hilly environment is difficult and most of the traditional methods have serious limitations. The 137Cs technique allows to obtain relatively quickly retrospective medium term soil erosion results. The objective of this study was using 137Cs approach to quantify soil loss under agricultural system which develops under growing human pressure on the hilly terrain of the Meghalaya Plateau. The measured values of caesium inventory for all sampling points are between 2% and 63% of the reference value of caesium inventory. The estimated annual soil loss for sampling points located on the slope are between 29 and 79 Mg·ha−1·yr−1 in the case of an improved mass balance model. It means that soil erosion in this manually tilled agricultural area cannot be neglected.

2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


2007 ◽  
Vol 50 (6) ◽  
pp. 1051-1060 ◽  
Author(s):  
Avacir Casanova Andrello ◽  
Carlos Roberto Appoloni ◽  
Virgílio Franco do Nascimento Filho

The aim of this work was to assess the soil erosion process in native forest by the 137Cs methodology. The mass balance model was applied to assess the rates of soil loss in three native forests around of Londrina city, Paraná, Brazil. 137Cs distribution depth was of exponential type for the three forests and 137Cs inventory was 241 Bq m-2 for Mata 1, 338 Bq m-2 for Mata 2 and 325 Bq m-2 for Mata UEL. The soil loss value calculated for three native forests was: 6,684 kg ha-1 yr-1 for Mata 1, 1,788 kg ha-1 yr-1 for Mata 2 and 4,524 kg ha-1 yr-1 for Mata UEL.


2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


1993 ◽  
Vol 73 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Y. Z. Cao ◽  
D. R. Coote ◽  
C. Wang ◽  
M. C. Nolin

137Cs in the soil was used to estimate soil erosion at two National Soil Conservation Program benchmark sites in the province of Quebec (sites 15-QU and 16-QU). The 137Cs baseline in an uneroded forest area was approximately 3100 Bq m−2. The 137Cs content at site 15-QU ranged from 1072 Bq m−2 to 6389 Bq m−2, while at site 16-QU it ranged from 663 Bq m−2 to 5444 Bq m−2. Computed net erosion over the past 30 yr at site 15-QU varied from a loss of 9.65 kg m−2 yr−1 to a gain of 10.88 kg m−2 yr−1 and at site 16-QU from a loss of 6.38 kg m−2 yr−1 to a gain of 1.73 kg m−2 yr−1. The average net erosion rates were 2.43 kg m−2 yr−1 at site 15-QU and 1.29 kg m−2 yr−1 at site 16-QU. Soil samples collected on a grid pattern indicated that 90% and 83% of the area at sites 15-QU and 16-QU, respectively, was subjected to net soil loss. A comparison of total 137Cs movement from eroded areas to depositional areas showed that 24.2% of 137Cs was lost from site 15-QU, while about 17.6% of 137Cs was lost from site 16-QU. Mapping of 137Cs content and calculated soil loss and deposition showed that soil erosion was closely related to topography.Under similar slope conditions, the soil erosion rates were 27–68% higher at site 15-QU than at site 16-QU. Higher tillage frequency and use of silage corn were the suggested reasons for the higher soil erosion rates at site 15-QU compared with site 16-QU, which had been used for hay and small grains. Key words: 137Cs, erosion, deposition, soil conservation


2020 ◽  
Author(s):  
Katy Wiltshire ◽  
Toby Waine ◽  
Bob Grabowski ◽  
Miriam Glendell ◽  
Steve Addy ◽  
...  

&lt;p&gt;Although fine-grained sediment (FGS) is a natural component of river systems, increased fluxes can impact FGS levels to such an extent they cause detrimental, irreversible changes in the way rivers function intensifying flood risk and negatively affecting water quality.&lt;/p&gt;&lt;p&gt;Previous catchment scale studies indicate there is no simple link between areas of sediment loss and the organic carbon (OC) load in waterways; areas with a high soil loss rate may not contribute most sediment to the rivers and areas that contribute the most sediment may not contribute the most OC. Anthropogenic and climate changes can accelerate soil erosion and the role of soil OC transported by erosional processes in the fluxes of C between land, water and atmosphere is still debated. Tracing sediment pathways, likely depositional areas and connections to streams leads to better assumptions about control processes and better estimation of OC fluxes.&lt;/p&gt;&lt;p&gt;In this innovative study OC fingerprinting of sediment reaching a catchment&amp;#8217;s waterbodies is combined with OC stock and erosion modelling of the terrestrial catchment. Initial results show disconnect between catchment OC loss erosion modelling and fingerprinting results, which could be due to failure to model connectivity between the land and river channel. The current soil erosion model RUSLE (Revised Universal Soil Loss Equation) calculates only the spatial pattern of mean annual soil erosion rates. Using the WaTEM SEDEM model, which in includes routing (and possible en route deposition) of eroded sediments to river channels, we aim to determine the dominant source of OC within catchment streams by identification of both the land-use specific areas with the highest OC loss and the transport pathways between the sources and river channel.&lt;/p&gt;


Geoderma ◽  
2015 ◽  
Vol 237-238 ◽  
pp. 256-265 ◽  
Author(s):  
G.R. Hancock ◽  
Tony Wells ◽  
C. Martinez ◽  
Chris Dever
Keyword(s):  

2015 ◽  
Vol 7 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Mali Vijay Kisan ◽  
Pathak Khanindra ◽  
Tiwari Kamlesh Narayan ◽  
Tripathy Swarup Kumar

The quantitative analysis of soil erosion changes over 7 years due to mining operations in two neighboring hilltops in West-Singhbhum District, Jharkhand, are reported. CartoSat-1, ETM+ and LISS-IV satellites' data provided spatial inputs in Universal Soil Loss Equation (USLE) and Morgan, Morgan and Finney method (MMF) models, which were used to predict the average annual soil erosion during the period of 2001–2008 in a geographic information system (GIS), in six distinct classes. In the comparative analysis of the 7-year period, the MMF model revealed a lower coefficient of variation 0.71 (2001) and 0.84 (2008) in predicted average annual soil loss, which increased by 16% (81.3–94.2 t ha−1yr−1), whereas in the case of USLE, the coefficients of variation were 3.88 (2001) and 1.94 (2008), with an increase of 61% (48.56–78.38 t ha−1yr−1). The correlation coefficient of these models was 0.1 (2001) and 0.36 (2008), which shows that both models predicted significantly differently as a result of the different factors considered. Overall, the MMF model predicted a higher soil erosion rate but less variation than USLE. Both models showed soil erosion rates were drastically increased by anthropogenic activities in the area, hence careful consideration is needed. The same sensor and imaging data could not be maintained. Correction of errors may reduce erosion, but it will still remain significant for future planning.


2019 ◽  
Vol 40 (5) ◽  
pp. 995-1002
Author(s):  
B. Zodinpuii ◽  
◽  
H. Lalthanzara ◽  
MS. Lalnuntluanga ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document