Sediment origins across the terrestrial-aquatic continuum: climate threat mitigation and promotion of water quality

Author(s):  
Katy Wiltshire ◽  
Toby Waine ◽  
Bob Grabowski ◽  
Miriam Glendell ◽  
Steve Addy ◽  
...  

<p>Although fine-grained sediment (FGS) is a natural component of river systems, increased fluxes can impact FGS levels to such an extent they cause detrimental, irreversible changes in the way rivers function intensifying flood risk and negatively affecting water quality.</p><p>Previous catchment scale studies indicate there is no simple link between areas of sediment loss and the organic carbon (OC) load in waterways; areas with a high soil loss rate may not contribute most sediment to the rivers and areas that contribute the most sediment may not contribute the most OC. Anthropogenic and climate changes can accelerate soil erosion and the role of soil OC transported by erosional processes in the fluxes of C between land, water and atmosphere is still debated. Tracing sediment pathways, likely depositional areas and connections to streams leads to better assumptions about control processes and better estimation of OC fluxes.</p><p>In this innovative study OC fingerprinting of sediment reaching a catchment’s waterbodies is combined with OC stock and erosion modelling of the terrestrial catchment. Initial results show disconnect between catchment OC loss erosion modelling and fingerprinting results, which could be due to failure to model connectivity between the land and river channel. The current soil erosion model RUSLE (Revised Universal Soil Loss Equation) calculates only the spatial pattern of mean annual soil erosion rates. Using the WaTEM SEDEM model, which in includes routing (and possible en route deposition) of eroded sediments to river channels, we aim to determine the dominant source of OC within catchment streams by identification of both the land-use specific areas with the highest OC loss and the transport pathways between the sources and river channel.</p>

2015 ◽  
Vol 3 (3) ◽  
pp. 363-387 ◽  
Author(s):  
A. J. West ◽  
M. Arnold ◽  
G. AumaÎtre ◽  
D. L. Bourlès ◽  
K. Keddadouche ◽  
...  

Abstract. Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25–0.35 mm yr−1, though rates of mass wasting are poorly constrained. The deficit between our best estimates for soil production rates and measurements of soil loss rates supports conclusions from previous studies that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest, and scrubland may lead to rapid depletion of soil resources.


2004 ◽  
Vol 28 (3) ◽  
pp. 340-365 ◽  
Author(s):  
Richard Brazier

The role of erosion by water in the UK is considered. A summary of available data describing water erosion is presented providing insights into rates of erosion from the hillslope scale to the large catchment scale. Evidence suggests that soil erosion rates in excess of acceptable thresholds occur on a wide range of soils and under a wide range of land uses throughout the country. Given the recent shift towards erosion modelling and away from erosion monitoring, discussion of the quality of existing available observed data in the context of model evaluation is made. Much quality data exist in the UK to describe erosion by water, but it is argued here that few datasets provide the necessary detail with which to evaluate model performance accurately, especially when the description of the spatial heterogeneity of soil loss is a goal. Furthermore, the paradox between data collection (to improve models) and erosion modelling (to replace data collection) is highlighted as an issue that must be addressed within the discipline if full use of datasets and improvement of models is to be made.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


1993 ◽  
Vol 73 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Y. Z. Cao ◽  
D. R. Coote ◽  
C. Wang ◽  
M. C. Nolin

137Cs in the soil was used to estimate soil erosion at two National Soil Conservation Program benchmark sites in the province of Quebec (sites 15-QU and 16-QU). The 137Cs baseline in an uneroded forest area was approximately 3100 Bq m−2. The 137Cs content at site 15-QU ranged from 1072 Bq m−2 to 6389 Bq m−2, while at site 16-QU it ranged from 663 Bq m−2 to 5444 Bq m−2. Computed net erosion over the past 30 yr at site 15-QU varied from a loss of 9.65 kg m−2 yr−1 to a gain of 10.88 kg m−2 yr−1 and at site 16-QU from a loss of 6.38 kg m−2 yr−1 to a gain of 1.73 kg m−2 yr−1. The average net erosion rates were 2.43 kg m−2 yr−1 at site 15-QU and 1.29 kg m−2 yr−1 at site 16-QU. Soil samples collected on a grid pattern indicated that 90% and 83% of the area at sites 15-QU and 16-QU, respectively, was subjected to net soil loss. A comparison of total 137Cs movement from eroded areas to depositional areas showed that 24.2% of 137Cs was lost from site 15-QU, while about 17.6% of 137Cs was lost from site 16-QU. Mapping of 137Cs content and calculated soil loss and deposition showed that soil erosion was closely related to topography.Under similar slope conditions, the soil erosion rates were 27–68% higher at site 15-QU than at site 16-QU. Higher tillage frequency and use of silage corn were the suggested reasons for the higher soil erosion rates at site 15-QU compared with site 16-QU, which had been used for hay and small grains. Key words: 137Cs, erosion, deposition, soil conservation


Geoderma ◽  
2015 ◽  
Vol 237-238 ◽  
pp. 256-265 ◽  
Author(s):  
G.R. Hancock ◽  
Tony Wells ◽  
C. Martinez ◽  
Chris Dever
Keyword(s):  

2015 ◽  
Vol 7 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Mali Vijay Kisan ◽  
Pathak Khanindra ◽  
Tiwari Kamlesh Narayan ◽  
Tripathy Swarup Kumar

The quantitative analysis of soil erosion changes over 7 years due to mining operations in two neighboring hilltops in West-Singhbhum District, Jharkhand, are reported. CartoSat-1, ETM+ and LISS-IV satellites' data provided spatial inputs in Universal Soil Loss Equation (USLE) and Morgan, Morgan and Finney method (MMF) models, which were used to predict the average annual soil erosion during the period of 2001–2008 in a geographic information system (GIS), in six distinct classes. In the comparative analysis of the 7-year period, the MMF model revealed a lower coefficient of variation 0.71 (2001) and 0.84 (2008) in predicted average annual soil loss, which increased by 16% (81.3–94.2 t ha−1yr−1), whereas in the case of USLE, the coefficients of variation were 3.88 (2001) and 1.94 (2008), with an increase of 61% (48.56–78.38 t ha−1yr−1). The correlation coefficient of these models was 0.1 (2001) and 0.36 (2008), which shows that both models predicted significantly differently as a result of the different factors considered. Overall, the MMF model predicted a higher soil erosion rate but less variation than USLE. Both models showed soil erosion rates were drastically increased by anthropogenic activities in the area, hence careful consideration is needed. The same sensor and imaging data could not be maintained. Correction of errors may reduce erosion, but it will still remain significant for future planning.


2014 ◽  
Author(s):  
Claudio Bosco ◽  
Graham Sander

Rainfall induced landslides and soil erosion are part of a complex system of multiple interacting processes, and both are capable of significantly affecting sediment budgets. These sediment mass movements also have the potential to significantly impact on a broad network of ecosystems health, functionality and the services they provide. To support the integrated assessment of these processes it is necessary to develop reliable modelling architectures. This paper proposes a semi-quantitative integrated methodology for a robust assessment of soil erosion rates in data poor regions affected by landslide activity. It combines heuristic, empirical and probabilistic approaches. This proposed methodology is based on the geospatial semantic array programming paradigm and has been implemented on a catchment scale methodology using GIS spatial analysis tools and GNU Octave. The integrated data-transformation model relies on a modular architecture, where the information flow among modules is constrained by semantic checks. In order to improve computational reproducibility, the geospatial data transformations implemented in ESRI ArcGis are made available in the free software GRASS GIS. The proposed modelling architecture is flexible enough for future transdisciplinary scenario-analysis to be more easily designed. In particular, the architecture might contribute as a novel component to simplify future integrated analyses of the potential impact of wildfires or vegetation types and distributions, on sediment transport from water induced landslides and erosion.


Sign in / Sign up

Export Citation Format

Share Document