scholarly journals Electrical resistivity methods for landfill monitoring

Author(s):  
Łukasz Zawadzki ◽  
Dorota Wychowaniak ◽  
Mariusz Lech

Abstract Every single investment affects the natural environment, and that is why it is so important to eliminate nuisance it could cause. Extremely harmful effect on environment or human health could be expected from waste treatment facilities. One of the kinds of contamination which is a real threat to soil and water environment are leachates from landfills. They contain random chemical composition and can migrate from landfill through soil water flux leading to environmental pollution and degradation of groundwater. This paper focuses on the use of geophysical methods to assess migration of pollutants from the landfill through the subsoil. The laboratory tests of solute transport have been conducted on three soil samples from Łubna site to simulate the contamination flow. Migration of leachates through soil samples was controlled using the column test and electrical resistivity measurements which allow to com pare the results obtained with the standard column test method and electrical resistivity measurements. It leads to the conclusion that electrical resistivity methods for contamination transport monitoring in soil–water systems are suitable. Furthermore, field electrical resistivity tomography have been used for monitoring of the vertical sealing system in Łubna landfill.

Author(s):  
Dorota Wychowaniak ◽  
Łukasz Zawadzki ◽  
Mariusz Lech

Abstract Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.


2020 ◽  
Vol 10 (7) ◽  
pp. 2263 ◽  
Author(s):  
Mariusz Lech ◽  
Zdzisław Skutnik ◽  
Marek Bajda ◽  
Katarzyna Markowska-Lech

Standard test methods may not be suitable or sufficient for determining the geotechnical conditions of a structure’s subsoil and the effects of the designed structures on the environment. Geophysical test methods, validated with other methods, may prove useful. In recent years they have found many new applications in engineering practice, both geotechnical and environmental. The advantages of geophysical methods include the non-destructive and non-invasive nature of the tests, their low costs and quick results, as well as compatibility with different materials, including soils, solid rocks, wastes and anthropogenic formations. The paper presents the analysis of laboratory and field investigations including research in a modified oedometer, resistivity chamber, electrical resistivity tomography (ERT) and resistivity cone penetration test (RCPT). Laboratory tests allowed for the assessment of the degree of saturation and porosity of sandy and clayey soils. The tests were carried out on saturated and unsaturated soil samples and allowed for the determination of some relationships between electrical conductivity and porosity. The proposed equations were used to assess parameters in in situ studies using RCPT tests and showed good agreement with reference values based on undisturbed soil samples. ERT tests confirmed the usefulness of electrical measurements in the quality assurance of subsoil and hydrotechnical structures. The tests showed weakening zones in the levee body, discontinuity of the vertical sealing system on the modernized section of the embankment, and location of the top of clay deposits.


Soil Science ◽  
2008 ◽  
Vol 173 (10) ◽  
pp. 707-720 ◽  
Author(s):  
Arlène Besson ◽  
Isabelle Cousin ◽  
Abel Dorigny ◽  
Michel Dabas ◽  
Dominique King

2010 ◽  
Vol 61 (1) ◽  
pp. 120-132 ◽  
Author(s):  
A. Besson ◽  
I. Cousin ◽  
H. Bourennane ◽  
B. Nicoullaud ◽  
C. Pasquier ◽  
...  

2014 ◽  
Vol 31 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Grzegorz Pacanowski ◽  
Paweł Czarniak ◽  
Anna Bąkowska ◽  
Radosław Mieszkowski ◽  
Fabian Welc

Abstract This paper addresses the problem of assessing the leakproofness of the bottom of a deep foundation trench, secured by cavity wall, using geophysical methods of electrical resistivity tomography. The study was conducted on a large construction project in Lublin, in a place where there are complicated soil-water conditions: the groundwater level is above the proposed depth of foundation trench, the subsoil is heterogeneous, and there are karsted and weathered carbonate sediments with confined aquifer below the bottom of the trench. A hydraulic fracture occurred at the bottom of the trench during the engineering works, which caused the water flow into the trench. In order to recognize the soil-water conditions the first stage of geophysical measurements of electrical resistivity tomography (ERT) was made. The applied methodology allowed to determine the extent of the hydraulic fracture zone within the bottom of foundation trench. In order to assess the leakproofness of Diaphragm Wall the geophysical ERT measurements were repeated (stage 2) A clear reduction in the value of the electrical resistivity of soils in the area of hydraulic fracture was caused by clay injection. The results of ERT measurements are discussed and graphically presented.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


Geotecnia ◽  
2016 ◽  
Vol 137 ◽  
pp. 141-155
Author(s):  
Herson Oliveira da Rocha ◽  
◽  
Lúcia Maria Costa e Silva ◽  
João Andrade dos Reis Júnior ◽  
◽  
...  

1967 ◽  
Vol 6 (47) ◽  
pp. 599-606 ◽  
Author(s):  
Hans Röthlisberger

A brief description of the resistivity method is given, stressing the points which are of particular importance when working on glaciers. The literature is briefly reviewed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2448
Author(s):  
Alex Sendrós ◽  
Aritz Urruela ◽  
Mahjoub Himi ◽  
Carlos Alonso ◽  
Raúl Lovera ◽  
...  

Water percolation through infiltration ponds is creating significant synergies for the broad adoption of water reuse as an additional non-conventional water supply. Despite the apparent simplicity of the soil aquifer treatment (SAT) approaches, the complexity of site-specific hydrogeological conditions and the processes occurring at various scales require an exhaustive understanding of the system’s response. The non-saturated zone and underlying aquifers cannot be considered as a black box, nor accept its characterization from few boreholes not well distributed over the area to be investigated. Electrical resistivity tomography (ERT) is a non-invasive technology, highly responsive to geological heterogeneities that has demonstrated useful to provide the detailed subsurface information required for groundwater modeling. The relationships between the electrical resistivity of the alluvial sediments and the bedrock and the difference in salinity of groundwater highlight the potential of geophysical methods over other more costly subsurface exploration techniques. The results of our research show that ERT coupled with implicit modeling tools provides information that can significantly help to identify aquifer geometry and characterize the saltwater intrusion of shallow alluvial aquifers. The proposed approaches could improve the reliability of groundwater models and the commitment of stakeholders to the benefits of SAT procedures.


Sign in / Sign up

Export Citation Format

Share Document