scholarly journals Static and Dynamic Responses of a Reinforced Concrete Beam Strengthened with Steel and Polypropylene Fibers

2019 ◽  
Vol 27 (3) ◽  
pp. 44-54
Author(s):  
Radhika Sridhar ◽  
Ravi Prasad

AbstractThis paper describes an experimental investigation on mono steel and polypropylene (PP) fiber-reinforced concrete beams. The main aim of this present study is to evaluate undamaged and damaged reinforced concrete (RC) beams incorporated with mono fibers such as steel and PP fibers under free-free constraints. In this experimental work, a total of nine RC beams were cast and analyzed in order to study the dynamic behavior as well as the static load behavior of steel fiber-reinforced concrete (SFRCs) and polypropylene fiber-reinforced concrete (PPFRCs). Damage to the SFRC and PPFRC beams was obtained by cracking the concrete for one of the beams in each set under four-point bending tests with different percentage variations of the damage levels such as 50%, 70% and 90% of the maximum ultimate load. The fundamental natural frequency and damping values obtained through the dynamic tests for the SFRC and PPFRC beams were compared with a control RC beam at each level of damage that had been acquired through static tests. The static experimental test results emphasize that the SFRC beam has attained a higher ultimate load compared with the control RC beam.

2016 ◽  
Vol 860 ◽  
pp. 117-120 ◽  
Author(s):  
Ly Chan ◽  
Ganchai Tanapornraweekit ◽  
Somnuk Tangtermsirikul

This paper presents an experimental study on bending behavior of aramid and steel fiber reinforced concrete (AFRC and SFRC) members. The objective is to investigate effects of two types of aramid fiber and one type of steel fiber in hybrid reinforced concrete (RC) beams. The term hybrid beam is defined as the beam with fiber reinforced concrete (FRC) cast in tension zone and normal concrete (without fiber) cast in compression zone of the beam. The diameter of aramid fiber (AF) is 0.5mm and the surface condition is twist fiber consisting of two single fibers. The fiber lengths are 30mm and 40mm for two types of aramid fiber. The diameter of steel fiber (SF) is 0.6mm and the length is 33mm with hooked ends. Four reinforced concrete (RC) beams with a dimension of 150×200×2100 mm3 were designed to undergo flexural failure. All the tested beams are with the same reinforcement ratio (0.93%), having a fiber volume fraction (Vf) of 1% for each type of fiber. One RC beam without fiber was prepared and tested as a controlled specimen. The height of the FRC tension zone at ultimate state was calculated to be 170mm. Load capacity, average and maximum crack widths of hybrid aramid and steel fiber reinforced concrete beams (HAFRCs & HSFRC) under four-point bending tests were discussed.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1682 ◽  
Author(s):  
Jun Zhao ◽  
Jingchao Liang ◽  
Liusheng Chu ◽  
Fuqiang Shen

Many researchers have performed experimental and theoretical studies on the shear behavior of steel fiber reinforced concrete (SFRC) beams with conventional reinforcement; few studies involve the shear behavior of SFRC beams with high-strength reinforcement. In this paper, the shear test of eleven beams with high-strength reinforcement was carried out, including eight SFRC beams and three reinforced concrete (RC) beams. The load-deflection curve, concrete strain, stirrup strain, diagonal crack width, failure mode and shear bearing capacity of the beams were investigated. The test results show that steel fiber increases the stiffness, ultimate load and failure deformation of the beams, but the increase effect of steel fiber decreases with the increase of stirrup ratio. After the diagonal crack appears, steel fiber reduces the concrete strains of the diagonal section, stirrup strains and diagonal crack width. In addition, steel fiber reduces crack height and increases crack number. Finally, the experimental values of the shear capacities were compared with the values calculated by CECS38:2004 and ACI544.4R, and the equation of shear capacity in CECS38:2004 was modified to effectively predict the shear capacities of SFRC beams with high-strength reinforcement.


Author(s):  
Natalia Sharma

Abstract: Reinforced concrete structures are frequently in need of repair and strengthening as a result of numerous environmental causes, ageing, or material damage under intense stress conditions, as well as mistakes made during the construction process. RC structures are repaired using a variety of approaches nowadays. The usage of FRC is one of the retrofitting strategies. Steel fiber reinforced concrete (SFRC) was used in this investigation because it contains randomly dispersed short discrete steel fibers that operate as internal reinforcement to improve the cementitious composite's characteristics (concrete). The main rationale for integrating small discrete fibers into a cement matrix is to reduce the amount of cement used. The principal reason for incorporating short discrete fibers into a cement matrix is to reduce cracking in the elastic range, increase the tensile strength and deformation capacity and increase the toughness of the resultant composite. These properties of SFRC primarily depend upon length and volume of Steel fibers used in the concrete mixture. In India, the steel fiber reinforced concrete (SFRC) has seen limited applications in several structures due to the lack of awareness, design guidelines and construction specifications. Therefore, there is a need to develop information on the role of steel fibers in the concrete mixture. The experimental work reported in this study includes the mechanical properties of concrete at different volume fractions of steel fibers. These mechanical properties include compressive strength, split tensile strength and flexural strength and to study the effect of volume fraction and aspect ratio of steel fibers on these mechanical properties. However, main aim of the study was significance of reinforced concrete beams strengthened with fiber reinforced concrete layer and to investigate how these beams deflect under strain. The objective of the investigation was finding that applying FRC to strengthen beams enhanced structural performance in terms of ultimate load carrying capacity, fracture pattern deflection, and mode of failure or not.


Materials ◽  
2017 ◽  
Vol 10 (6) ◽  
pp. 666 ◽  
Author(s):  
Viktor Gribniak ◽  
Vytautas Tamulenas ◽  
Pui-Lam Ng ◽  
Aleksandr K. Arnautov ◽  
Eugenijus Gudonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document