scholarly journals Development and Testing of Data Reduction Software for Measurements Using Pressure Sensitive Paints

2018 ◽  
Vol 2018 (4) ◽  
pp. 68-80
Author(s):  
William J. Deitrick ◽  
Wit Stryczniewicz

Abstract The paper concentrates on post-processing of data necessary for pressure measurements using Pressure Sensitive Paints (PSP). The purpose of the study was to develop and test procedures for extraction of the surface pressure distribution from the images captured during PSP tests. The core issues addressed were reduction of the influence of model movement and deformation during wind tunnel run and synchronization between conventional pressure tap measurements and PSP data, necessary for in-situ calibration. In the course of the studies, two approaches on image registration were proposed: the first based on geometric transformation of control points pairs with cross-correlation tuning and the second based on similarity finding and estimation of geometric transformation of the images. Performance of the developed algorithm was tested with use of experimental set-up allowing for controlled movement of the imagined target with micrometer resolution. Both of the proposed approaches to PSP image resection proved to perform well. After testing of the software, the PSP system was used for determination of the pressure field on flat plate exposed to impinging jet. The presented procedures and results can be useful for research groups developing in-house PSP measurements systems for wind tunnel tests and internal flow investigations.

2014 ◽  
Vol 45 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Ivan Vladimirovich Egorov ◽  
Boris Evgen'evich Zhestkov ◽  
Vladimir Viktorovich Shvedchenko

1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


1989 ◽  
Vol 54 (7) ◽  
pp. 1785-1794 ◽  
Author(s):  
Vlastimil Kubáň ◽  
Josef Komárek ◽  
Zbyněk Zdráhal

A FIA-FAAS apparatus containing a six-channel sorption equipment with five 3 x 26 mm microcolumns packed with Spheron Oxin 1 000, Ostsorb Oxin and Ostsorb DTTA was set up. Combined with sorption from 0.002M acetate buffer at pH 4.2 and desorption with 2M-HCl, copper can be determined at concentrations up to 100, 150 and 200 μg l-1, respectively. For sample and eluent flow rates of 5.0 and 4.0 ml min-1, respectively, and a sample injection time of 5 min, the limit of copper determination is LQ = 0.3 μg l-1, repeatability sr is better than 2% and recovery is R = 100 ± 2%. The enrichment factor is on the order of 102 and is a linear function of time (volume) of sample injection up to 5 min and of the sample injection flow rate up to 11 ml min-1 for Spheron Oxin 1 000 and Ostsorb DTTA. For times of sorption of 60 and 300 s, the sampling frequency is 70 and 35 samples/h, respectively. The parameters of the FIA-FAAS determination (acetylene-air flame) are comparable to or better than those achieved by ETA AAS. The method was applied to the determination of traces of copper in high-purity water.


1996 ◽  
Vol 61 (6) ◽  
pp. 844-855 ◽  
Author(s):  
Olga Šolcová ◽  
Petr Schneider

It was shown that the sampling loop, detector and connecting elements in the chromatographic set-up for determination of transport parameters by the dynamic method significantly influence the response peaks from columns packed with porous or nonporous particles. A method, based on the use of convolution theorem, was developed which can take these effects into account. The applicability of this method was demonstrated on the case of axial dispersion in a single-pellet-string column (SPSR) packed with nonporous particles. It is possible to handle also responses from columns packed with porous particles by a similar procedure.


Sign in / Sign up

Export Citation Format

Share Document