scholarly journals Design and Analysis Methods for Composite Bonded Joints

2021 ◽  
Vol 2021 (1) ◽  
pp. 45-63
Author(s):  
Przemysław Dobrzański ◽  
Witold Oleksiak

Abstract A literature review on existing design and analysis methods for composite adhesively bonded joints has been conducted. Methods that might form a basis for development of practical engineering methodology for adhesively bonded joints were selected and described. Starting from the simplest and the fastest analytical methods (closed-form solutions): average shear stress, shear lag model and adhesive beam model through more complex and more time consuming numerical methods supported by finite element analysis: global models, local models, cohesive zone models. Assumptions and applicability of each method was discussed. Simple and fast methods in order to be reliable have to include many conservative assumptions and therefore may lead to over-designed structure (weight penalty). Structural optimization and weight reduction require the usage of more complex and time consuming methods. Therefore, selection of adequate methods should always be balanced against strength, durability, costs and weight.

2014 ◽  
Vol 1049-1050 ◽  
pp. 892-900
Author(s):  
Zhe Min Jia ◽  
Guo Qing Yuan ◽  
David Hui

Adhesive bonding is one of the effective ways to reduce the weight of structures. Researchers have done lots of numerical analysis and finite element analysis taking into account of the complex stress state in the bonded area, as well as the stress singularity occurs at the overlap edges with a view to efficiently predict the strength and rigidity of adhesively bonded joints. As they may suffer shock or impact loads in practice which leads to high strain rate in structures, analysis methods for adhesively bonded joints differ from that at quasi-static condition for two reasons: one is the mechanical properties of materials, including adhesives and substrates are different at high strain rates, the other is the additional consideration of elastic wave propagation in solid body. This article summaries several finite element analysis methods for adhesively bonded joints at high strain rate developed by domestic and foreign scholars and corresponding experimental standards for determining required parameters of each analytical method and raised some questions that need for further study.


1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


2011 ◽  
Vol 189-193 ◽  
pp. 3427-3430
Author(s):  
Xiao Cong He

This paper deals with the stress distribution in adhesively bonded joints with rubbery adhesives. The 3-D finite element analysis (FEA) software was used to model the joint and predict the stress distribution along the whole joint. The FEA results indicated that there are stress discontinuities existing in the stress distribution within the adhesive layer and adherends at the lower interface and the upper interface of the boded section for most of the stress components. The FEA results also show that the stress field in the whole joint is dominated by the normal stresses components S11, S33 and the shear stress component S13. The features and variations of these critical stresses components are discussed.


2010 ◽  
Vol 97-101 ◽  
pp. 763-766 ◽  
Author(s):  
Min You ◽  
Jia Ling Yan ◽  
Xiao Ling Zheng ◽  
Ding Feng Zhu ◽  
Jing Rong Hu

The effect of the adhesive thickness and elastic modulus on the stress distribution in the mid-bondline of the adhesively-bonded steel/steel joint under impact loading is analyzed using 3-D finite element method (FEM). The results show that the stress distributed in bondline near the interface was significantly affected by the adhesive thickness and the elastic modulus. When the thickness increased from 1 mm to 2 mm, the values of all the stress components increased evidently along the upper edge of the adhesive but decreased significantly along the lower edge near the loading face. When the elastic modulus of the adhesive was increased, all the stresses increased along either the upper or the lower edge. It is clear that the suitable thickness and the elastic modulus of the adhesive are very important when the adhesively bonded joints subjected to the impacting load.


2010 ◽  
Vol 148-149 ◽  
pp. 753-757 ◽  
Author(s):  
Xiao Cong He

Adhesive bonding is a high-speed fastening method which is suitable for joining advanced lightweight sheet materials that are hard to weld. Latest literature relating to finite element analysis (FEA) of fatigue behaviour of adhesively bonded joints is reviewed in this paper. The recent development in FEA of fatigue behaviour of adhesively bonded joints is described with particular reference to three major factors that influence the fatigue behaviour of adhesively bonded joints: failure mechanism, environmental effects and hybrid joining techniques. The main FE methods used in FEA of fatigue behaviour of adhesively bonded joints are discussed and illustrated with brief case studies from the literature.


Sign in / Sign up

Export Citation Format

Share Document